The cooling of rotor shrouds in the first stage of a high-pressure turbine requires special attention as flatter turbine inlet temperature profiles and more highly loaded blades result in increased thermal and mechanical stresses. The use of film cooling and/or internal convective cooling makes the rotor shroud heavier and oversized, restricting the maximum rotational speed. Alternative methods are, therefore, sought to achieve improved cooling of the shroud. This paper discusses the low-speed experimental investigation of two “passive” cooling concepts known as “rail cooling” and “platform cooling.” It has been shown experimentally that the modified cooling method, namely, the platform cooling, substantially improves the rotor shroud coolant distribution in the critical areas while employing significantly lower amounts of coolant.

1.
Wallis
,
A. M.
,
Denton
,
J. D.
, and
Demargne
,
A. A. J.
, 2000, “
The Control of Shroud Leakage Flows to Reduce Aerodynamic Losses in a Low Aspect Ratio Shrouded Axial Flow Turbine
,” ASME Paper No. 2000-GT-0475.
2.
Pfau
,
A.
,
Trieber
,
M.
,
Sell
,
M.
, and
Gymrathy
,
G.
, 2000, “
Flow Interaction From the Exit Cavity of an Axial Turbine Blade Row Labyrinth Seal
,” ASME Paper No. 2000-GT-0481.
3.
Pfau
,
A.
,
Schlienger
,
J.
,
Rusch
,
D.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
Unsteady Flow Interactions within the Inlet Cavity of a Turbine Rotor Tip Labyrinth Seal
,” ASME Paper No. GT2003–38271.
4.
Denton
,
J. D.
, and
Johnson
,
C. G.
, 1972, “
The Tip Leakage Loss of Turbine Blades: A Review and a Theory for Shrouded Blades
,” CEGB Report No. R/M/N 627.
5.
Denton
,
J. D.
, and
Johnson
,
C. G.
, 1976, “
An Experimental Study of The Tip Leakage from Around Shrouded Turbine Blades
,” CEGB Report No. R/M/N 848.
6.
Epstein
,
A. H.
,
Guenette
,
G. R.
,
Norton
,
R. J. G.
, and
Yuzhang
,
C.
, 1985, “
Time Resolved Measurements of a Turbine Rotor Stationary Tip Casing Pressure and Heat Transfer Field
,” AIAA Paper No. 85-1220.
7.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
, 1991, “
Turbine Tip and Shroud Heat Transfer
,”
J. Turbomach.
0889-504X,
113
, pp.
502
507
.
8.
Janke
,
E.
,
Haselbach
,
F.
,
Whitney
,
C.
,
Kanjirakkad
,
V. P.
,
Thomas
,
R. L.
, and
Hodson
,
H. P.
, 2006, “
Passive Shroud Cooling Concepts for HP Turbines: CFD Based Design Approach
,” ASME Paper No. GT2006-91194.
9.
Kanjirakkad
,
V. P.
, 2005, “
Passive Shroud Cooling in High Pressure Turbines
,” Ph.D. thesis, University of Cambridge, Cambridge.
10.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
613
621
.
11.
Pfau
,
A.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2004, “
Making Use of Labyrinth Interaction Flow
,” ASME Paper No. GT2004-53797.
12.
McGovern
,
K. T.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film-Cooling Physics: Part I-Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
102
112
.
13.
McGovern
,
K. T.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film Cooling Physics: Part 2-Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
113
121
.
14.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
You do not currently have access to this content.