Detailed film cooling effectiveness distributions were experimentally obtained on a turbine blade platform within a linear cascade. The film cooling effectiveness distributions were obtained on the platform with upstream disturbances used to simulate the passing vanes. Cylindrical rods, placed upstream of the blades, simulated the wake created by the trailing edge of the stator vanes. The rods were placed at four locations to show how the film cooling effectiveness was affected relative to the vane location. In addition, delta wings were placed upstream of the blades to model the effect of the passage vortex (generated in the vane passage) on the platform film cooling effectiveness. The delta wings create a vortex similar to the passage vortex as it exits the upstream vane passage. The film cooling effectiveness was measured with the delta wings placed at four location, to investigate the effect of the passing vanes. Finally, the delta wings were coupled with the cylindrical rods to examine the combined effect of the upstream wake and passage vortex on the platform film cooling effectiveness. The detailed film cooling effectiveness distributions were obtained using pressure sensitive paint in the five blade linear cascade. An advanced labyrinth seal was placed upstream of the blades to simulate purge flow from a stator-rotor seal. The coolant flow rate varied from 0.5% to 2.0% of the mainstream flow, while the Reynolds number of the mainstream flow remained constant at 3.1×105 (based on the inlet velocity and chord length of the blade). The film cooling effectiveness was not significantly affected with the upstream rod. However, the vortex generated by the delta wings had a profound impact on the film cooling effectiveness. The vortex created more turbulent mixing within the blade passage, and the result is reduced film cooling effectiveness through the entire passage. When the vane induced secondary flow is included, the need for additional platform cooling becomes very obvious.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
, p.
646
.
2.
Langston
,
L. S.
, 2001, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
11
26
.
3.
Chyu
,
M. K.
, 2001, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
27
36
.
4.
Simon
,
T. W.
, and
Piggush
,
J. D.
, 2006, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
0748-4658,
22
, pp.
310
312
.
5.
Langston
,
L. S.
,
Nice
,
L. M.
, and
Hooper
,
R. M.
, 1976, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,” ASME Paper No. 76-GT-50.
6.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
7.
Goldstein
,
R. J.
, and
Spores
,
R. A.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
862
869
.
8.
Wang
,
H. P.
,
Olson
,
S. J.
, and
Goldstein
,
R. J.
, 1997, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
1
8
.
9.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
, 1990, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
488
496
.
10.
Harasgama
,
S. P.
, and
Burton
,
C. S.
, 1992, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade: Part 1—Experimental Technique and Results
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
734
740
.
11.
Jabbari
,
M. Y.
,
Marston
,
K. C.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
, 1996, “
Film Cooling of the Gas Turbine Endwall by Discrete-Hole Injection
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
278
284
.
12.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
613
621
.
13.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1997, “
Aerodynamic Aspects of Endwall Film Cooling
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
786
793
.
14.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1998, “
The Design of an Improved Endwall Film Cooling Configuration
,” ASME Paper No. 98-GT-483.
15.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Derdichizzi
,
A.
, 2005, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film Cooled Endwall
,” ASME Paper No. GT2005–68544.
16.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwall
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
524
529
.
17.
Granser
,
D.
, and
Schulenberg
,
T.
, 1990, “
Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud
,” ASME Paper No. 90-GT-95.
18.
Roy
,
R. P.
,
Squires
,
K. D.
,
Gerendas
,
M.
,
Song
,
S.
,
Howe
,
W. J.
, and
Ansari
,
A.
, 2000, “
Flow and Heat Transfer at the Hub Endwall of Inlet Vane Passages—Experiments and Simulations
,” ASME Paper No. 2000-GT-198.
19.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. J.
, 2000, “
Effects of Slot Bleed Injection Over a Contoured End Wall on Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,” ASME Paper No. 2000-GT-200.
20.
Oke
,
R.
,
Simon
,
T.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
Y. L.
, and
Chyu
,
M.
, 2001, “
Measurements Over a Film-Cooled Contoured Endwall With Various Coolant Injection Rates
,” ASME Paper No. 2001-GT-0140.
21.
Oke
,
R. A.
, and
Simon
,
T. W.
, 2002, “
Film Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,” ASME Paper No. GT-2002–30169.
22.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
720
729
.
23.
Liu
,
G.
,
Liu
,
S.
,
Zhu
,
H.
,
Lapworth
,
B. C.
, and
Forest
,
A. E.
, 2004, “
Endwall Heat Transfer and Film Cooling Measurements in a Turbine Cascade with Injection Upstream of Leading Edge
,”
Heat Transfer Asian Res.
1099-2871,
33
, pp.
141
152
.
24.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
, 2001, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
730
735
.
25.
Zhang
,
L. J.
, and
Moon
,
H. K.
, 2003, “
Turbine Nozzle Endwall Inlet Film Cooling—The Effect of a Backward Facing Step
,” ASME Paper No. GT2003–38319.
26.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2004, “
Adiabatic Effectiveness Measurements of Endwall Film Cooling for a First Stage Vane
,” ASME Paper No. GT2004–53326.
27.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2005, “
Effects of Mid-Passage Gap, Endwall Misalignment and Roughness on Endwall Film-Cooling
,” ASME Paper No. GT2005–68900.
28.
Wright
,
L. M.
,
Gao
,
Z.
,
Yang
,
H.
, and
Han
,
J. C.
, 2006, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,” ASME Paper No. GT2006–90375.
29.
Wright
,
L. M.
,
Blake
,
S.
, and
Han
,
J. C.
, 2006, “
Effectiveness Distributions on Turbine Blade Cascade Platforms Through Simulated Stator-Rotor Seals
,” AIAA Paper No. AIAA-2006–3402.
30.
Wright
,
L. M.
,
Blake
,
S.
, and
Han
,
J. C.
, 2006, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform With Stator-Rotor Purge and Discrete Film Holes Flows
,” ASME Paper No. IMECE2006–15092.
31.
Han
,
J.-C.
,
Zhang
,
L.
, and
Ou
,
S.
, 1993, “
Influence of Unsteady Wake on Heat Transfer Coefficient From a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
904
911
.
32.
Ou
,
S.
,
Han
,
J.-C.
,
Mehendale
,
A. B.
, and
Lee
,
C. P.
, 1994, “
Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part I–Effect on Heat Transfer Coefficients
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
721
729
.
33.
Zhang
,
L.
, and
Han
,
J.-C.
, 1994, “
Influence of Mainstream Turbulence on Heat Transfer Coefficients From a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
896
903
.
34.
Zhang
,
L.
, and
Han
,
J.-C.
, 1995, “
Combined Effect of Free-Stream Turbulence and Unsteady Wake on Heat Transfer Coefficients From a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
296
302
.
35.
Mhetras
,
S.
, and
Han
,
J. C.
, 2006, “
Effect of Unsteady Wake on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade
,” AIAA Paper No. AIAA-2006–3403.
36.
Zhang
,
L.
, and
Han
,
J. C.
, 1994, “
Influence of Mainstream Turbulence on Heat Transfer Coefficients From a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
896
903
.
37.
Sauer
,
H.
,
Muller
,
R.
, and
Vogerler
,
K.
, 2000, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modification at the Endwall
,” ASME Paper No. 2000-GT-0473.
38.
Zess
,
G. A.
, and
Thole
,
K. A.
, 2002, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
167
175
.
39.
Becz
,
S.
,
Majewski
,
M. S.
, and
Langston
,
L. S.
, 2003, “
Leading Edge Modification Effects on Turbine Cascade Endwall Loss
,” ASME Paper No. GT2003–38898.
40.
Shih
,
T. I.-P.
, and
Lin
,
Y.-L.
, 2002, “
Controlling Secondary—Flow Structure by Leading-Edge Airfoil Fillet and Inlet Swirl to Reduce Aerodynamic Loss and Surface Heat Transfer
,” ASME Paper No. GT-2002–30529.
41.
Lethander
,
A. T.
,
Thole
,
K. A.
,
Zess
,
G.
, and
Wagner
,
J.
, 2004, “
Vane-Endwall Junction Optimization to Reduce Turbine Vane Passage Adiabatic Wall Temperatures
,”
J. Propul. Power
0748-4658,
20
, pp.
1105
1116
.
42.
Hermanson
,
K.
,
Kern
,
S.
,
Picker
,
G.
, and
Parneix
,
S.
, 2003, “
Predictions of External Heat Transfer for Turbine Vanes and Blades With Secondary Flow Fields
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
107
113
.
43.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,” ASME Paper No. HT2005–72363.
44.
Gao
,
Z.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling
,” ASME Paper No. IMECE2005–80146.
45.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J. C.
, 2004, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure Sensitive Paint
,” ASME Paper No. GT2004–53249.
46.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2004, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Turbine Blade
,” ASME Paper No. IMECE2004–59852.
47.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2005, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Film-Cooled Blade Using Pressure Sensitive Paint
,” ASME Paper No. GT2005–68344.
48.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, 2006, “
Film Cooling Effectiveness on a Rotating Blade Platform
,” ASME Paper No. GT2006–90034.
49.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
You do not currently have access to this content.