This paper presents an experimental and computational study of the midspan low Reynolds number loss behavior for two highly loaded low pressure turbine airfoils, designated L2F and L2A, which are forward and aft loaded, respectively. Both airfoils were designed with incompressible Zweifel loading coefficients of 1.59. Computational predictions are provided using two codes, Fluent (with k-kl-ω model) and AFRL’s Turbine Design and Analysis System (TDAAS), each with a different eddy-viscosity RANS based turbulence model with transition capability. Experiments were conducted in a low speed wind tunnel to provide transition models for computational comparisons. The Reynolds number range based on axial chord and inlet velocity was 20,000 < Re < 100,000 with an inlet turbulence intensity of 3.1%. Predictions using TDAAS agreed well with the measured Reynolds lapse rate. Computations using Fluent however, predicted stall to occur at significantly higher Reynolds numbers as compared to experiment. Based on triple sensor hot-film measurements, Fluent’s premature stall behavior is likely the result of the eddy-viscosity hypothesis inadequately capturing anisotropic freestream turbulence effects. Furthermore, rapid distortion theory is considered as a possible analytical tool for studying freestream turbulence that influences transition near the suction surface of LPT airfoils. Comparisons with triple sensor hot-film measurements indicate that the technique is promising but more research is required to confirm its utility.

References

1.
Wilson
,
D. G.
, and
Korakianitis
,
T.
, 1998,
The Design of High-Efficiency Turbomachinery and Gas Turbines
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs
.
2.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
, 2008, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,” ASME Paper No. GT2008-50898.
3.
Bons
,
J. P.
,
Hansen
,
L. C.
,
Clark
,
J. P.
,
Koch
,
P. J.
, and
Sondergaard
,
R.
, 2005, “
Designing Low-Pressure Turbine Blades With Integrated Flow Control
,” ASME Paper No. GT2005-68962.
4.
Gross
,
A.
, and
Fasel
,
H. F.
, 2007, “
Investigation of Low Pressure Turbine Separation Control
,” AIAA Paper No. 2007-520.
5.
Bons
,
J. P.
,
Reimann
,
D.
, and
Bloxham
,
M.
, “
Separated Flow Transition on an LP Turbine Blade With Pulsed Flow Control
,”
ASME J. Turbomach.
,
130
, p.
021014
.
6.
Volino
,
R. J.
, 2010, “
Separated Flow Measurements on a Highly Loaded Low-Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
132
, p.
011007
.
7.
Welch
,
G. E.
, 2010, “
Assessment of Aerodynamic Challenges of a Variable-Speed Power Turbine for Large Civil Tilt-Rotor Application
,” 66th Forum of the American Helicopter Society, Phoenix, AZ, 11–13 May.
8.
McQuilling
,
M.
, 2007, “
Design and Validation of a High Lift Low-Pressure Turbine Blade
,” Ph.D. thesis, Wright State University, Dayton.
9.
Clark
,
J. P.
,
Koch
,
P. J.
,
Ooten
,
M. K.
,
Johnson
,
J. J.
,
Dagg
,
J.
,
McQuilling
,
M. W.
,
Huber
,
F.
, and
Johnson
,
P. D.
, 2009, “
Design of Turbine Components to Answer Research Questions in Unsteady Aerodynamics and Heat Transfer
,” AFRL Report No. AFRL-RZ-WP-TR-2009-2180.
10.
Casey
,
M. V.
, 1994, “
Computational Methods for Preliminary Design and Geometry Definition in Turbomachinery
,”
Turbomachinery Design Using CFD
, (AGARD Lecture Series,
195
), pp.
1
‐1:1‐
22
.
11.
Dorney
,
D. J.
, and
Davis
,
R. L.
, 1992, “
Navier-Stokes Analysis of Turbine Blade Heat Transfer and Performance
,”
ASME J. Turbomach.
,
114
, pp.
795
806
.
12.
Praisner
,
T. J.
, and
Clark
,
J. P.
, 2007, “
Predicting Transition in Turbomachinery, Part I - A Review and New Model Development
,”
ASME J. Turbomach.
,
129
, pp.
1
13
.
13.
Vanderplaats
,
G. N.
, 1984,
Numerical Optimization Techniques for Engineering Design: With Applications
,
McGraw-Hill
,
New York
.
14.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
, 2003,
The Design and Analysis of Computer Experiments
,
Springer-Verlag
,
New York
.
15.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2004, “
A New Model for Boundary Layer Transition Using a Single-Point RANS Approach
,”
J. Turbomach.
,
126
, pp.
193
202
.
16.
Walters
,
K. K.
, and
Leylek
,
J. J.
, 2005, “
Computational Fluid Dynamics Study of Wake-Induced Transition on a Compressor-Like Flat Plate
,”
J. Turbomach.
,
127
, pp.
52
63
.
17.
Schlichting
,
H
., and
Gersten
,
K.
, 2000,
Boundary Layer Theory
8th ed.,
Springer-Verlag
,
New York
.
18.
Sanders
,
D. D.
,
O’Brien
,
O. F.
,
Sondergaard
,
R.
,
Polanka
,
M. D.
, and
Rabe
,
D. C.
, 2011, “
Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part I: Development of Prediction Methodology
,”
J. Turbomach.
,
133
, p.
031011
.
19.
Sanders
,
D. D.
,
O’Brien
,
O. F.
,
Sondergaard
,
R.
,
Polanka
,
M. D.
, and
Rabe
,
D. C.
, 2009, “
A Mixing Plane Model Investigation of Separation and Transitional Flow at Low Reynolds Numbers in a Multistage Low Pressure Turbine
,” AIAA Paper No. 2009-1467.
20.
Cutrone
,
L.
,
De Palma
,
P.
,
Pascazio
,
G.
, and
Napolitano
,
M.
, 2007, “
An Evaluation of Bypass Transition Models for Turbomachinery Flows
,”
Int. J. Heat Fluid Flow
,
28
, pp.
161
177
.
21.
Baldwin
,
B.
, and
Lomax
,
H.
, 1978, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,” AIAA Paper No. AIAA-78-257.
22.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Rice
,
M. J.
, and
Clark
,
J. P.
, 2007, “
Predicting Transition in Turbomachinery-Part II: Model Validation and Benchmarking
,”
J. Turbomach.
,
129
, pp.
14
22
.
23.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R.
, 2001, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,” ASME Paper No GT-2001-0190.
24.
Binder
,
A.
,
Schröder
,
T. H.
, and
Hourmouziadis
,
J.
, 1988, “
Turbulence Measurements in a Multistage Low-Pressure Turbine
,” ASME Paper No. 88-GT-79.
25.
Schmitz
,
J. T.
,
Morris
,
S. C.
,
Ma
,
R.
,
Corke
,
T. C.
,
Clark
,
J. P.
,
Kock
,
P. J.
, and
Puterbaugh
,
S. L.
, 2010, “
Highly Loaded Low-Pressure Turbine: Design, Numerical, and Experimental Analysis
,” ASME Paper No. GT2010-23591.
26.
Lekakis
,
I. C.
,
Adrian
,
R. J.
, and
Jones
,
B. G.
, 1989, “
Measurement of Velocity Vectors With Orthogonal and Non-Orthogonal Triple-Sensor Probes
,”
Exp. Fluids
,
7
, pp.
228
240
.
27.
Tritton
,
D. J.
, 1988,
Physical Fluid Dynamics
, 2nd ed.,
Oxford University
,
New York
.
28.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
75
, pp.
3
8
.
29.
Roach
,
P. E.
, 1987, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
30.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-ɛ Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation
,”
Comp. Fluids
,
24
(
3
), pp.
227
238
.
31.
Weiss
,
A. P.
, and
Fottner
,
L.
, 1995, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
J. Turbomach.
,
117
, pp.
133
141
.
32.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,2nd ed.,
DCW Industries Inc
,
La Cañada, California
.
33.
Pope
,
S. B.
, 2000,
Turbulent Flows
1st ed.,
Cambridge University Press
,
Cambridge, UK
.
34.
Hunt
,
J. C. R.
, and
Carruthers
,
D. J.
, 1990, “
Rapid Distortion Theory and the ‘Problems’ of Turbulence
,”
J. Fluid Mech.
,
212
, pp.
497
532
.
35.
Goldstein
,
M. E.
, and
Durbin
,
P. A.
, 1980, “
The Effect of Finite Turbulence Spatial Scale on the Amplification of Turbulence by a Contracting Stream
,”
J. Fluid Mech.
,
98
, pp.
473
508
.
You do not currently have access to this content.