This paper addresses a comparison of numerical stall simulations with experimental data at 60% (subsonic) and 95% (supersonic) of the design speed in a modern transonic fan rig. The unsteady static pressures were obtained with high frequency Kulite transducers mounted on the casing upstream and downstream of the fan. The casing pressure variation was clearly visible in the measurements when a stall cell passed below the transducers. Numerical stall simulations were conducted using an implicit, time-accurate, 3D compressible Reynolds-averaged Navier-Stokes (RANS) solver. The comparisons between the experiment and simulation mainly cover performance curves and time-domain pressure traces of Kulites during rotating stall. At two different fan speeds, the stall characteristics such as the number and rotating speed of the stall cells were well-matched to the experimental values. The mass flow rate and the loading parameter under the fully-developed rotating stall also showed good agreement with the experiment. In both the numerical and experimental results, a large stall cell was eventually formed after stall inception regardless of the fan speed. Based on the validation, the detailed flow has been evaluated to understand rotating stall in a transonic fan. In addition, it was found that the mass flow measurement using casing static pressure might be wrong during transient flow if the Kulites were mounted too close to the fan blade.

References

1.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
115
,
pp.
1
9
.10.1115/1.2929209
2.
Day
,
I. J.
,
1993
, “
Active Suppression of Rotating Stall and Surge in Axial Compressors
,”
ASME J. Turbomach.
,
115
,
pp.
40
47
.10.1115/1.2929216
3.
Camp
,
T. R.
and
Day
,
I. J.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
,
pp.
393
401
.10.1115/1.2841730
4.
Freeman
,
C.
,
Wilson
,
A. G.
,
Day
,
I. J.
, and
Swinbanks
,
M. A.
,
1998
, “
Experiments in Active Control of Stall on an Aeroengine Gas Turbine
,”
ASME J. Turbomach.
,
120
,
pp.
637
647
.10.1115/1.2841773
5.
Day
,
I. J.
,
Breuer
,
T.
,
Escuret
,
J.
,
Cherett
,
M.
, and
Wilson
,
A.
,
1999
, “
Stall Inception and the Prospects for Active Control in Four High-Speed Compressors
,”
ASME J. Turbomach.
,
121
,
pp.
18
27
.10.1115/1.2841229
6.
He
,
L.
,
1997
, “
Computational Study of Rotating-Stall Inception in Axial Compressor
,”
J. Propul. Power
,
13
,
pp.
31
38
.10.2514/2.5147
7.
Hoying
,
D. A.
,
Tan
,
C. S.
,
Vo.
H. D.
, and
Greitzer
,
E. M.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
,
pp.
735
742
.10.1115/1.2836727
8.
Gourdain
,
N.
,
Burguburu
,
S.
,
Leboeuf
,
F.
, and
Miton
,
H.
,
2006
, “
Numerical Simulation of Rotating Stall in a Subsonic Compressor
,”
Aerosp. Sci. Technol.
,
10
,
pp.
9
18
.10.1016/j.ast.2005.07.006
9.
Choi
,
M.
,
Baek
,
J. H.
,
Oh
,
S. H.
, and
Ki
,
D. J.
,
2008
, “
Role of Hub-Corner-Separation on Rotating Stall in an Axial Compressor
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
51
,
pp.
93
100
.10.2322/tjsass.51.93
10.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
,
p.
011023
.10.1115/1.2750674
11.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2008
, “
Unsteady Flow and Aeroelasticity Behavior of Aeroengine Core Compressors During Rotating Stall and Surge
,”
ASME J. Turbomach.
,
130
,
p.
031017
.10.1115/1.2777188
12.
Chen
,
J.-P.
,
Hathaway
,
M. D.
, and
Herrick
,
G. P.
,
2008
, “
Prestall Behavior of a Transonic Axial Compressor Stage via Time-Accurate Numerical Simulation
,”
ASME J. Turbomach.
,
130
,
p.
041014
.10.1115/1.2812968
13.
Gourdain
,
N.
,
Burguburu
,
S.
,
Leboeuf
,
F.
, and
Michon
,
G. J.
,
2010
, “
Simulation of Rotating Stall in a Whole Stage of an Axial Compressor
,”
Comput. Fluids
,
39
(
9
),
pp.
1644
1655
.10.1016/j.compfluid.2010.05.017
14.
Choi. M. and
Vahdati
,
M.
,
2011
, “
Numerical Strategies for Capturing Rotating Stall
,”
Proc. Inst. Mech. Eng., Part A
,
225
,
pp.
655
664
.10.1177/0957650911403869
15.
Choi
,
M.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2011
, “
Effects of Fan Speed on Rotating Stall Inception and Recovery
,”
ASME J. Turbomach.
,
133
,
p.
041013
.10.1115/1.4003243
16.
Anderson
,
S. J.
and
Smith
,
N. H. S.
,
2003
, “
Analysis of Unsteady Casing Pressure Measurements during Surge and Rotating Stall
,”
Proceedings of ISUAAAT10
,
Springer
,
New York
,
pp.
293
312
.
17.
Sayma
,
A. I.
,
Vahdati
,
M.
,
Sbardella
,
L.
, and
Imregun
,
M.
,
2000
, “
Modeling of 3D Viscous Compressible Turbomachinery Flows Using Hybrid Grids
,”
AIAA J.
,
38
(
6
),
pp.
945
954
.10.2514/2.1062
18.
Vahdati
,
M.
,
Sayma
,
A.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
3
),
pp.
349
351
.10.1115/1.1861912
You do not currently have access to this content.