This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.

References

1.
Baines
,
N. C.
,
2005
, “
Fundamentals of Turbochargers
,”
Concepts ETI, Inc.
, Vermont.
2.
Hawley
,
J. G.
,
Wallace
,
F. J.
,
Cox
,
A.
,
Horrocks
,
R. W.
, and
Bird
,
G. L.
,
1999
, “
Variable Geometry Turbocharging for Lower Emissions and Improved Torque Characteristics
,”
Proc. Inst. Mech. Eng., Part D, J. Automob. Eng.
,
213
(
2
), pp.
145
159
. 10.1243/0954407991526766
3.
Clenci
,
A. C.
,
Descombes
,
G.
,
Podevin
,
P.
, and
Hara
,
V.
,
2007
, “
Some Aspects Concerning the Combination of Downsizing with Turbocharging, Variable Compression Ratio, and Variable Intake Valve Lift
,”
Proc. Inst. Mech. Eng., Part D, J. Automob. Eng.
,
221
(
10
), pp.
1287
1294
. 10.1243/09544070JAUTO449
4.
Maiboom
,
A.
,
Tauzia
,
X.
, and
Héteta
,
J. F.
,
2008
, “
Experimental Study of Various Effects of Exhaust Gas Recirculation (EGR) on Combustion and Emissions of an Automotive Direct Injection Diesel Engine
,”
Energy
,
33
(
1
), pp.
22
34
.10.1016/j.energy.2007.08.010
5.
Rodgers
,
C.
,
2001
, “
Turbocharging a High Altitude UAV C.I. Engine
,” AIAA Paper No. 2001-3970.
6.
Krain
,
H.
,
Karpinski
,
G.
, and
Beversdorff
,
M.
,
2001
, “
Flow Analysis in a Transonic Centrifugal Compressor Rotor Using 3-Component Laser Velocimetry
,” ASME Paper No. 2001-GT-0315.
7.
Ayder
,
E.
, and
Van den Braembussche
,
R. A.
,
1991
, “
Experimental Study of the Swirling Flow in the Internal Volute of a Centrifugal Compressor
,” ASME Paper No. 91-GT-7.
8.
Ayder
,
E.
, and
Van den Braembussche
,
R. A.
,
1994
, “
Numerical Analysis of the Three-Dimensional Swirling Flow in Centrifugal Compressor Volutes
,”
ASME J. Turbomach.
,
116
(
2
), pp.
462
468
.10.1115/1.2929435
9.
Ayder
,
E.
,
Van den Braembussche
,
R. A.
, and
Brasz
,
J. J.
,
1993
, “
Experimental and Theoretical Analysis of the Flow in a Centrifugal Compressor Volute
,”
ASME J. Turbomach.
,
115
(
3
), pp.
582
589
.10.1115/1.2929293
10.
Gu
,
F. H.
,
Engeda
,
A.
,
Cave
,
M.
, and
Liberti
,
J. L. D.
,
2001
, “
A Numerical Investigation on the Volute/Diffuser Interaction Due to the Axial Distortion at the Impeller Exit
,”
ASME Journal of Fluids Engineering
,
123
(
3
), pp.
475
483
.10.1115/1.1385515
11.
Gu
,
F. H.
, and
Engeda
,
A.
,
2001
, “
A Numerical Investigation on the Volute/Impeller Steady-State Interaction due to Circumferential Distortion
,” ASME Paper No. 2001-GT-0328.
12.
Hillewaert
,
K.
and
Van den Braembussche
,
R. A.
,
1999
, “
Numerical Simulation of Impeller-Volute Interaction in Centrifugal Compressors
,”
ASME J. Turbomach.
,
121
(
3
), pp.
603
608
.10.1115/1.2841358
13.
Reunanen
,
A.
,
Pitkanen
,
H.
,
Siikonen
,
T.
,
Heiska
,
H.
,
Larjola
,
J.
,
Esa
,
H.
, and
Sallinen
,
P.
,
2000
, “
Computational and Experimental Comparison of Different Volute Geometries in a Radial Compressor
,” ASME Paper No. 2000-GT-469.
14.
Sorokes
,
J.
,
Borer
,
C.
, and
Koch
,
J.
,
1998
, “
Investigation of the Circumferential Static Pressure Non-Uniformity Caused by a Centrifugal Compressor Discharge Volute
,” ASME Paper No. 98-GT-326.
15.
Hagelstein
,
D.
,
Van den Braembussche
,
R.
,
Keiper
,
R.
, and
Rautenberg
,
M.
,
1997
, “
Experimental Investigation of the Circumferential Pressure Distortion in Centrifugal Compressor Stages
,” ASME Paper No. 97-GT-50.
16.
Fatsis
,
A.
,
Pierret
,
S.
, and
Van den Braembussche
R. A.
,
1997
, “
Three Dimensional Unsteady Flow and Forces in Centrifugal Impellers with Circumferential Distortion of the Outlet Static Pressure
,”
ASME J. Turbomach.
,
119
(
1
), pp.
94
102
.10.1115/1.2841015
17.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
18.
Guo
,
G. D.
,
Zhang
,
Y. J.
,
Xu
,
J. Z.
,
Zheng
,
X. Q.
, and
Zhuge
,
W. L.
,
2008
, “
Numerical Simulation of a Transonic Centrifugal Compressor Blades Tip Clearance Flow of Vehicle Turbocharger
,” ASME Paper No. GT2008-50957.
19.
Hagelstein
,
D.
,
Hillewaert
,
K.
, and
Van den Braembussche
,
R. A.
,
2000
, “
Experimental and Numerical Investigation of the Flow in a Centrifugal Compressor Volute
,”
ASME J. Turbomach.
,
122
(
1
), pp.
22
31
.10.1115/1.555423
20.
Denton
J. D.
,
2010
. “
Some Limitations of Turbomachinery CFD
,” ASME Paper No. GT2010-22540.
You do not currently have access to this content.