The influence of the shape of the downstream edge of trench film cooling hole outlets on film cooling effectiveness was investigated using CFD for flat plate film cooling. A 90 deg trench outlet wall with impinging 30 deg film cooling jets results in improved transverse film cooling effectiveness but produces a vertical slot jet into the cross flow, which is not the best aerodynamics for optimum film cooling. It was considered that improvements in the cooling effectiveness would occur if the trailing edge of the trench outlet produced a flow that was inclined in the direction of the crossflow. Beveled and filleted trench outlet shapes were investigated. The CFD predictions were shown to predict well the conventional sharp edged trench outlet experimental results for a flat plate geometry. The flat plate CFD predictions were also shown to predict the experimental results for trench cooling on the suction side of a turbine vane, where the local curvature was small relative to the trench width. The beveled and filleted trench outlets were predicted to suppress the vertical jet momentum and give a Coanda effect that allowed the cooling air to attach to the downstream wall surface. This produced an improved transverse spread of the coolant. Also, it was predicted that reducing the coolant mass flow per hole and increasing the number of rows of holes gave, for the same total coolant mass flow and the same surface area, a superior surface averaged cooling effectiveness.

References

1.
Andrews
,
G. E.
, and
Kim
,
M. N.
,
2001
, “
The Influence of Film Cooling on Emissions for a Low Radial Swirler Gas Turbine Combustor
,”
ASME International Gas Turbine & Aeroengine Congress & Exhibition
,
New Orleans, LA
,
ASME Paper No. 2001-GT-71
.
2.
Wieghardt
,
K.
,
1946
, “
Hot-Air Discharge for De-Icing
,”
AAF Transaction
,
Report No. F-TS-919-RE
.
3.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.10.1016/S0065-2717(08)70020-0
4.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
, pp.
595
607
.10.1016/0017-9310(74)90007-6
5.
Esgar
,
J. B.
,
1971
, “
Turbine Cooling-Its Limitations and its Future
,”
AGARD-CP-73-71, High Temperature Turbines, Paper No. 14
.
6.
Pederson
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
Trans. ASME, Ser. C: J. Heat Transfer
,
99
, pp.
620
627
.10.1115/1.3450752
7.
Andrews
,
G. E.
,
Khalifa
,
I. M.
,
Asere
,
A. A.
, and
Bazdidi-Tehrani
,
F.
,
1995
, “
Full Coverage Effusion Film Cooling With Inclined Holes
,”
ASME International Gas Turbine & Aeroengine Congress & Exposition
,
Houston, Texas
,
June 5-8
,
ASME Paper No. 95-GT-274
.
8.
Afejuku
,
W. O.
,
Hay
,
N.
, and
Lampard
,
D.
,
1983
, “
Film Cooling Effectiveness of Double Rows of Holes
,”
ASME J. Eng. Power
,
102
, pp.
601
606
.10.1115/1.3230309
9.
Andrews
,
G. E.
,
Alikhanizadeh
,
M.
,
Asere
,
A. A.
,
Hussain
,
C. I.
,
Khoskbar Azari
,
M. S.
, and
Mkpadi
,
M. C.
,
1986
, “
Small Diameter Film Cooling Holes: Wall Convective Heat Transfer
,”
ASME J. Turbomach.
,
108
, pp.
283
289
.10.1115/1.3262049
10.
Andrews
,
G. E.
,
Alikhanizadeh
,
M.
,
Bazdidi-Tehrani
,
F.
,
Hussain
,
C. I.
, and
Khoskbar Azari
,
M. S.
,
1987
, “
Small Diameter Film Cooling Holes: The Influence of Hole Size and Pitch
,”
ASME Paper No. 87-HT-28
.
11.
Andrews
,
G. E.
, and
Bazdidi-Tehrani
,
F.
,
1989
, “
Small Diameter Film Cooling Hole Heat Transfer: The Influence of the Number of Holes
,”
ASME Paper No. 89-GT-7
,
1989
.
12.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1989
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME Paper No. 89-GT-175
.
13.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Film Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME Paper No. 90-GT-42
.
14.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1997
, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Field for Film Cooling With Large Angle Injection
,”
J. Turbomach.
,
119
, pp.
352
356
.10.1115/1.2841118
15.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exit
,”
J. Turbomach.
,
120
, pp.
327
335
.10.1115/1.2841410
16.
Zuniga
,
H. A.
,
Krishnan
,
V.
,
Ling
,
J. P. C. W.
, and
Kapat
,
J. S.
,
2007
, “
Trends in Film Cooling Effectiveness Caused by Increasing Angle of Diffusion Through a Row of Conical Holes
,”
ASME Paper No. GT2007-28287
.
17.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A.
,
Ingham
,
D.
, and
Pourkashanian
,
M.
,
2011
, “
Predictions of Effusion Cooling With Conjugate Heat Transfer
,”
Proceedings of the ASME IGTI Turbo Expo 2011, ASME Paper No. GT2011-45517
.
18.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Hole: Adiabatic Effectiveness
,”
J. Turbomach.
,
118
, pp.
807
813
.10.1115/1.2840938
19.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
J. Turbomach.
,
118
, pp.
800
806
.10.1115/1.2840937
20.
Sathyamurthy
,
P.
, and
Patankar
,
S. V.
,
1990
, “
Prediction of Film Cooling With Lateral Injection
,”
AIAA/ASME Thermophysics and Heat Transfer Conference
,
Seattle, WA
.
21.
Bunker
,
R.
,
2010
, “
Turbine Engine Film Cooling Design and Applications Lecture: Part I
,”
Film Cooling & Technology for Gas Turbines Workshop, Scottish Exhibition & Conference Centre
,
Glasgow, Scotland
,
June 13
.
22.
Bunker
,
R. S.
,
2002
, “
Film Cooling Effectiveness due to Discrete Holes Within a Transverse Trench
,”
ASME Paper No. GT-2002-30178
.
23.
Wang
,
T.
,
Chiintalapati
,
S.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2000
, “
Jet Mixing in a Trench
,”
Exp. Therm. Fluid Sci.
,
22
, pp.
1
17
.10.1016/S0894-1777(00)00010-8
24.
Lu
,
Y.
,
Dhungel
,
A.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2009
, “
Effect of Trench Width and Depth on Film Cooling From Cylindrical Holes Embedded in Trenches
,”
J. Turbomach.
,
131
, p.
011003
.10.1115/1.2950057
25.
Waye
,
S. K.
, and
Bogard
,
D. G.
,
2007
, “
High Resolution of Film Cooling Effectiveness Measurements of Axial Holes Embedded in a Transverse Trench With Various Trench Configurations
,”
J. Turbomach.
,
129
, pp.
294
302
.10.1115/1.2464141
26.
Jia
,
L.
,
Jing
,
R.
, and
Hongde
,
J.
,
2010
, “
Film Cooling Performance of the Embedded Holes In Trenches With Compound Angles
,”
ASME Paper No. GT-2010-22337
.
27.
Dorrington
,
J. R.
,
Bogard
,
D. G.
, and
Bunker
R. S.
,
2007
, “
Film Effectiveness Performance for Coolant Holes Embedded in Various Shallow Trench and Crater Depressions
,”
Proceedings ASME Turbo Expo 2007: Power for Land, Sea and Air, ASME Paper No. GT2007-27992
.
28.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Alan
,
B.
,
Ingham
,
D.
, and
Pourkashanian
,
M.
,
2010
, “
CFD Predictions of Single Row Film Cooling With Inclined Holes: Influence of Hole Outlet Geometry
,”
ASME Paper No. GT-2010-22308
.
29.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2007
, “
CFD Predictions of Film Cooling Adiabatic Effectiveness for Cylindrical Holes Embedded in Narrow and Wide Transverse Trenches
,”
Proceedings ASME Turbo Expo 2007: Power for Land, Sea and Air, ASME Paper No. GT2007-28005
.
30.
ANSYS
,
2009
, “
Theory Guide
,”
ANSYS FLUENT 12.0
.
31.
Launder
,
B. E.
,
1984
, “
Numerical Computation of Convective Heat Transfer in Complex Turbulent Flows: Time to Abandon Wall Function?
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1485
1491
.10.1016/0017-9310(84)90261-8
32.
Salim
,
M. S.
, and
Cheah
,
S. C.
,
2009
, “
Wall y + Strategy of Dealing With Wall-Bounded Turbulent Flows
,”
Proceedings of IMECS
, Vol.
II
.
You do not currently have access to this content.