Rotating and stationary orifices are used within the secondary air system to transport sealing/cooling air to its consumers. This paper reports on measurements of the discharge coefficient of rotating radial holes since their aerodynamical behavior is different from that of axial or stationary holes due to the presence of centrifugal and Coriolis forces. A test rig containing two independently rotating shafts was designed in order to investigate the flow phenomena and the discharge behavior of these orifices. The required air mass flow is delivered by a screw compressor and can be independently regulated to supply the inner and outer annular passages of the test rig. It allows for measurements of the discharge coefficient with cross flow and co- and counter-rotating shafts with centrifugal and centripetal flow through the rotating holes. On the outer shaft, absolute and differential pressures and temperatures in the rotating frame of reference are measured via a telemetry system. Measurements of the discharge coefficient for sharp-edged and rounded shaft inserts at a variety of different flow conditions and with swirl added to the air upstream of the orifice are presented. Furthermore, experiments were conducted to quantify the influence of the inner shaft (nonrotating and rotating) on the discharge behavior of orifices in the outer shaft. To complement the data acquired from the experiments and to obtain a better understanding of the flow field near the rotating holes numerical flow simulations were also performed.
Skip Nav Destination
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
e-mail: sousek.jan@seznam.cz
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
e-mail: daniel.riedmueller@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
e-mail: michael.pfitzner@unibw.de
Article navigation
August 2014
Research-Article
Experimental and Numerical Investigation of the Flow Field at Radial Holes in High-Speed Rotating Shafts
Jan Sousek,
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
e-mail: sousek.jan@seznam.cz
Jan Sousek
Institut für Thermodynamik LRT-10
,Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577
, Germany
e-mail: sousek.jan@seznam.cz
Search for other works by this author on:
Daniel Riedmüller,
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
e-mail: daniel.riedmueller@unibw.de
Daniel Riedmüller
Institut für Thermodynamik LRT-10
,Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577
, Germany
e-mail: daniel.riedmueller@unibw.de
Search for other works by this author on:
Michael Pfitzner
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
e-mail: michael.pfitzner@unibw.de
Michael Pfitzner
1
Institut für Thermodynamik LRT-10
,Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577
, Germany
e-mail: michael.pfitzner@unibw.de
1Address all correspondence to this author.
Search for other works by this author on:
Jan Sousek
Institut für Thermodynamik LRT-10
,Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577
, Germany
e-mail: sousek.jan@seznam.cz
Daniel Riedmüller
Institut für Thermodynamik LRT-10
,Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577
, Germany
e-mail: daniel.riedmueller@unibw.de
Michael Pfitzner
Institut für Thermodynamik LRT-10
,Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München,
Neubiberg 85577
, Germany
e-mail: michael.pfitzner@unibw.de
1Address all correspondence to this author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received October 18, 2013; final manuscript received November 5, 2013; published online January 31, 2014. Editor: Ronald Bunker.
J. Turbomach. Aug 2014, 136(8): 081009 (13 pages)
Published Online: January 31, 2014
Article history
Received:
October 18, 2013
Revision Received:
November 5, 2013
Citation
Sousek, J., Riedmüller, D., and Pfitzner, M. (January 31, 2014). "Experimental and Numerical Investigation of the Flow Field at Radial Holes in High-Speed Rotating Shafts." ASME. J. Turbomach. August 2014; 136(8): 081009. https://doi.org/10.1115/1.4026121
Download citation file:
Get Email Alerts
Cited By
Related Articles
An Investigation on the Discharge Coefficient of Compound Orifices in Rotating Disks
J. Eng. Gas Turbines Power (April,2022)
Comparison of
Discharge Coefficient Measurements and Correlations for Orifices With Cross-Flow and
Rotation
J. Turbomach (July,2010)
Experimental Study on Pressure Losses in Circular Orifices With Inlet Cross Flow
J. Turbomach (July,2018)
Flow Characteristics of Long Orifices With Rotation and Corner Radiusing
J. Turbomach (April,1988)
Related Proceedings Papers
Related Chapters
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential