In this paper, vane trailing-edge losses which occur in organic rankine cycle (ORC) turbines are investigated. Experiments are performed to study the influence of dense gas effects on trailing-edge loss in supersonic flows using a novel Ludwieg tube facility for the study of dense-gas flows. The data is also used to validate a computational fluid dynamics (CFD) flow solver. The computational simulations are then used to determine the contributions to loss from shocks and viscous effects which occur at the vane trailing edge. The results show that dense gas effects play a vital role in the structure of the trailing-edge flow, and control the extent of shock and viscous losses.

References

1.
Thompson
,
P.
,
1971
, “
Fundamental Derivative in Gas Dynamics
,”
Phys. Fluids
,
14
(
9
), pp.
1843
1849
.
2.
Lambrakis
,
K.
, and
Thompson
,
P.
,
1971
, “
Theoretical Study of Negative Shock Waves in Real Fluids
,”
Bull. Am. Phys. Soc.
,
16
(
11
), pp.
1320
.
3.
Wheeler
,
A.
, and
Ong
,
J.
,
2013
, “
The Role of Dense Gas Dynamics on ORC Turbine Performance
,”
ASME
Paper No. GTP-13-1214.
4.
Cramer
,
M.
, and
Crickenberger
,
A.
,
1992
, “
Prandtl-Meyer Function for Dense Gases
,”
AIAA J.
,
30
(
2
), pp.
561
564
.
5.
Borisov
,
A.
,
Borisov
,
A.
,
Kutateladze
,
S.
, and
Nakoryakov
,
V.
,
1983
, “
Rarefaction Shock-Wave Near the Critical Liquid Vapor Point
,”
J. Fluid Mech.
,
126
, pp.
59
73
.
6.
Lambrakis
,
K.
, and
Thompson
,
P.
,
1972
, “
Existence of Real Fluids With a Negative Fundamental Derivative Gamma
,”
Phys. Fluids
,
15
(
3
), pp.
933
935
.
7.
Thompson
,
P.
, and
Lambrakis
,
K.
,
1973
, “
Negative Shock-Waves
,”
J. Fluid Mech.
,
60
(01), pp.
187
208
.
8.
Cramer
,
M.
,
1989
, “
Negative Nonlinearity in Selected Fluorocarbons
,”
Phys. Fluids
,
1
(
11
), pp.
1894
1897
.
9.
Aldo
,
A.
, and
Argrow
,
B.
,
1995
, “
Dense Gas-Flow in Minimum Length Nozzles
,”
ASME J. Fluids Eng.
,
117
(
2
), pp.
270
276
.
10.
Brown
,
B.
, and
Argrow
,
B.
,
1997
, “
Two-Dimensional Shock Tube Flow for Dense Gases
,”
J. Fluid Mech.
,
349
, pp.
95
115
.
11.
Monaco
,
J.
,
Cramer
,
M.
, and
Watson
,
L.
,
1997
, “
Supersonic Flows of Dense Gases in Cascade Configurations
,”
J. Fluid Mech.
,
330
, pp.
31
59
.
12.
Cramer
,
M.
, and
Crickenberger
,
A.
,
1991
, “
The Dissipative Structure of Shock-Waves in Dense Gases
,”
J. Fluid Mech.
,
223
, pp.
325
335
.
13.
Congedo
,
P.
,
Corre
,
C.
, and
Cinnella
,
P.
,
2011
, “
Numerical Investigation of Dense-Gas Effects in Turbomachinery
,”
Comput. Fluids
,
49
(
1
), pp.
290
301
.
14.
Anderson
,
W.
,
1991
, “
Numerical Study on Using Sulfur-Hexaflouride as a Wind-Tunnel Test Gas
,”
AIAA J.
,
29
(
12
), pp.
2179
2180
.
15.
Anders
,
J.
,
Anderson
,
W.
, and
Murthy
,
A.
,
1999
, “
Transonic Similarity Theory Applied to a Supercritical Airfoil in Heavy Gas
,”
J. Aircraft
,
36
(
6
), pp.
957
964
.
16.
Kluwick
,
A.
,
2000
, “
Marginally Separated Flows in Dilute and Dense Gases
,”
Philos. Trans. R. Soc. London Ser. A
,
358
(
1777
), pp.
3169
3192
.
17.
Kluwick
,
A.
,
2004
, “
Internal Flows of Dense Gases
,”
Acta Mech.
,
169
(1), pp.
123
143
.
18.
Cinnella
,
P.
, and
Congedo
,
P.
,
2007
, “
Inviscid and Viscous Aerodynamics of Dense Gases
,”
J. Fluid Mech.
,
580
, pp.
179
217
.
19.
Wheeler
,
A.
, and
Ong
,
J.
,
2014
, “
A Study of the Three-Dimensional Unsteady Real-Gas Flows Within a Transonic ORC Turbine
,”
ASME
Paper No. GT2014-25475.
20.
Denton
,
J. D.
, and
Xu
,
L.
,
1990
, “
The Trailing Edge Loss of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
277
285
.
21.
Lemmon
,
E.
, and
Span
,
R.
,
2006
, “
Short Fundamental Equations of State for 20 Industrial Fluids
,”
J. Chem. Eng. Data
,
51
(
3
), pp.
785
850
.
22.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2010
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0
,” National Institute of Standards and Technology, Standard Reference Program, Gaithesburg, MD.
23.
Span
,
R.
, and
Wagner
,
W.
,
2003
, “
Equations of State for Technical Applications. II. Results for Nonpolar Fluids
,”
J. Thermophysics
,
24
(1), pp.
41
109
.
You do not currently have access to this content.