This paper examines the applicability of a triple layer of thermochromic liquid crystals (TLCs) for the determination of local heat transfer coefficients using the transient liquid crystal (LC) technique. The experiments were carried out in a narrow impingement channel, typically used for turbine blade cooling applications. Three types of narrow bandwidth LCs (1 °C range) of 35 °C, 38 °C, and 41 °C were individually painted on the target plate of the cooling cavity and the overall paint thickness was accurately determined with an integral coating thickness gauge. The 1D transient heat conduction equation is then implicitly solved for each individual TLC layer on its realistic depth on the painted surface. Local heat transfer coefficients are therefore calculated three times for the same location in the flow improving the measurement accuracy, especially at regions where the LC detection times are too short (stagnation points) or too long (wall-jet regions). The results indicate that if multiple LC layers are used and the paint thickness is not considered, the heat transfer coefficients can be significantly underestimated.

References

1.
Camci
,
C.
,
Kim
,
K.
,
Hippensteele
,
S. A.
, and
Poinsatte
,
P. E.
,
1993
, “
Evaluation of a Hue Capturing Based Transient Liquid Crystal Method for High-Resolution Mapping of Convective Heat Transfer on Curved Surfaces
,”
ASME J. Heat Transfer
,
115
(
2
), pp.
311
318
.
2.
Hippensteele
,
S. A.
, and
Poinsatte
,
P. E.
,
1993
, “
Transient Liquid Crystal Technique Used to Produce High-Resolution Convective Heat Transfer Coefficient Maps
,” NASA Lewis Research Center, Cleveland, OH,
NASA
Technical Report No. NASA TM-106083.
3.
Baughn
,
J. W.
,
1995
, “
Liquid Crystal Methods for Studying Turbulent Heat Transfer
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
365
375
.
4.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
IOP Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.
5.
Ekkad
,
S. V.
, and
Han
,
J.-C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
IOP Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.
6.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1986
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford Science Publications, Clarendon Press
, Oxford, UK.
7.
Pountney
,
O.
,
Cho
,
G.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2012
, “
Solutions of Fourier's Equation Appropriate for Experiments Using Thermochromic Liquid Crystal
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5908
5915
.
8.
Poser
,
R.
, and
von Wolfersdorf
,
J.
,
2011
, “
Liquid Crystal Thermography for Transient Heat Transfer Measurements in Complex Internal Cooling Systems
,”
ASME J. Heat Transfer
,
42
(
2
), pp.
181
197
.
9.
Poser
,
R.
,
Ferguson
,
J. R.
, and
von Wolfersdorf
,
J.
,
2009
, “
Temporal Signal Processing and Evaluation of Thermochromic Liquid Crystal Indications in Transient Heat Transfer Experiments
,”
8th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (ETC8)
, Graz, Austria, Mar. 23–27, pp.
785
795
.
10.
Vogel
,
G.
, and
Weigand
,
B.
,
2001
, “
A New Evaluation Method for Transient Liquid Crystal Experiments
,”
ASME 35th National Heat Transfer Conference
(
NHTC01
), Anaheim, CA, June 10–12, Paper No. NHTC2001-20250.
11.
Terzis
,
A.
,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Integrally Cast Turbine Airfoils
,” Ph.D. thesis, Swiss Federal Institute of Technology, EPFL, Lausanne, Switzerland, Thesis No. 6177.
12.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1377
1382
.
13.
Goldstein
,
R. J.
, and
Timmers
,
J. F.
,
1982
, “
Visualization of Heat Transfer From Arrays of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
25
(
12
), pp.
1857
1868
.
14.
Huang
,
L.
, and
El-Genk
,
M. S.
,
1994
, “
Heat Transfer of an Impinging Jet on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
37
(
13
), pp.
1915
1923
.
15.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat Transfer–Part II: A Temporal Investigation of Heat Transfer and Local Fluid Velocities
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3302
3314
.
16.
Lee
,
D. H.
,
Song
,
J.
, and
Chan
,
J. M.
,
2004
, “
The Effects of Nozzle Diameter on Impinging Jet Heat Transfer and Fluid Flow
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
554
557
.
17.
Baughn
,
J. W.
, and
Shimizu
,
S.
,
1989
, “
Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet
,”
ASME J. Heat Transfer
,
111
(
4
), pp.
1096
1098
.
18.
Lytle
,
D.
, and
Webb
,
B. W.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.
19.
Baughn
,
J. W.
,
Mayhew
,
J. E.
,
Anderson
,
M. R.
, and
Butler
,
R. J.
,
1998
, “
A Periodic Transient Method Using Liquid Crystals for the Measurement of Local Heat Transfer Coefficients
,”
ASME J. Heat Transfer
,
120
(
3
), pp.
772
777
.
20.
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1995
, “
An Advanced Method of Processing Liquid Crystal Video Signals From Transient Heat Transfer Experiments
,”
ASME J. Turbomach.
,
117
(
1
), pp.
184
189
.
21.
Talib
,
A. R. A.
,
Neely
,
A. J.
,
Ireland
,
P. T.
, and
Mullender
,
A. J.
,
2004
, “
A Novel Liquid Crystal Image Processing Technique Using Multiple Gas Temperature Steps to Determine Heat Transfer Coefficient Distribution and Adiabatic Wall Temperature
,”
ASME J. Turbomach.
,
126
(
4
), p.
587
.
22.
Ling
,
J. P. C. W.
,
Ireland
,
P. T.
, and
Turner
,
L.
,
2004
, “
A Technique for Processing Transient Heat Transfer, Liquid Crystal Experiments in the Presence of Lateral Conduction
,”
ASME J. Turbomach.
,
126
(
2
), pp.
247
258
.
23.
Waidmann
,
C.
,
Poser
,
R.
, and
von Wolfersdorf
,
J.
,
2013
, “
Application of Thermochromic Liquid Crystal Mixtures for Transient Heat Transfer Measurements
,”
10th European Conference on Turbomachinery Fluid Mechanics and Thermodynamics
(ETC10), Lappeenranta, Finland, Apr. 15–19, pp.
685
696
.
24.
Schulz
,
S.
,
Brack
,
S.
,
Terzis
,
A.
,
von Wolfersdorf
,
J.
, and
Ott
,
P.
,
2015
, “
On the Effects of Coating Thickness in Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
196
207
.
25.
Terzis
,
A.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Cochet
,
M.
,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Cast-In Turbine Airfoils
,”
ASME J. Turbomach.
,
136
(
9
), p.
091011
.
26.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
,
129
(
2
), pp.
269
280
.
27.
Fergason
,
J. L.
,
1964
, “
Liquid Crystals
,”
Sci. Am.
,
211
(
2
), pp.
76
85
.
28.
Fergason
,
J. L.
,
1968
, “
Liquid Crystals in Nondestructive Testing
,”
Appl. Opt.
,
7
(
9
), pp.
1729
1737
.
29.
Hallcrest
, 2014, “
TLC Products for Use in Research and Testing Applications
,”
LCR Hallcrest Research and Testing Products
, Glenview, IL.
30.
Heidmann
,
J. D.
,
1994
, “
Determination of a Transient Heat Transfer Property of Acrylic Using Thermochromic Liquid Crystals
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA
-TM-106541.
31.
Kwak
,
J. S.
,
2008
, “
Comparison of Analytical and Superposition Solutions of the Transient Liquid Crystal Technique
,”
AIAA J. Thermophys. Heat Transfer
,
22
(
2
), pp.
290
295
.
32.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
, “
Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique
,”
IOP Meas. Sci. Technol.
,
23
(
11
), p.
115303
.
33.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1987
, “
The Response Time of a Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals
,”
J. Phys. E: Sci. Instrum.
,
20
(
10
), pp.
1195
1199
.
34.
Terzis
,
A.
,
Wagner
,
G.
,
von Wolfersdorf
,
J.
,
Ott
,
P.
, and
Weigand
,
B.
,
2014
, “
Hole Staggering Effect on the Cooling Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071701
.
35.
Bouchez
,
J. P.
, and
Goldstein
,
R. J.
,
1975
, “
Impingement Cooling From a Circular Jet in a Cross Flow
,”
Int. J. Heat Mass Transfer
,
18
(
6
), pp.
719
730
.
36.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
37.
Terzis
,
A.
,
Ott
,
P.
,
Cochet
,
M.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2015
, “
Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels
,”
ASME J. Turbomach.
,
137
(
2
), p.
021004
.
38.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.
You do not currently have access to this content.