Endwall contouring is a technique used to reduce the strength and development of three-dimensional secondary flows in a turbine vane or blade passage in a gas turbine. The secondary flows locally affect the external heat transfer, particularly on the endwall surface. The combination of external and internal convective heat transfer, along with solid conduction, determines component temperatures, which affect the service life of turbine components. A conjugate heat transfer model is used to measure the nondimensional external surface temperature, known as overall effectiveness, of an endwall with nonaxisymmetric contouring. The endwall cooling methods include internal impingement cooling and external film cooling. Measured values of overall effectiveness show that endwall contouring reduces the effectiveness of impingement alone, but increases the effectiveness of film cooling alone. Given the combined case of both impingement and film cooling, the laterally averaged overall effectiveness is not significantly changed between the flat and the contoured endwalls. Flowfield measurements indicate that the size and location of the passage vortex changes as film cooling is added and as the blowing ratio increases. Because endwall contouring can produce local effects on internal cooling and film cooling performance, the implications for heat transfer should be considered in endwall contour designs.

References

1.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME
Paper No. GT2004-53998.
2.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,”
NASA
Lewis Research Center, Cleveland, OH, Report No. NASA-CR-168015.
3.
Hylton
,
L. D.
,
Nirmalan
,
V.
,
Sultanian
,
B. K.
, and
Kauffman
,
R. M.
,
1988
, “
The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer
,”
NASA
Lewis Research Center, Cleveland, OH, Report No. NASA-CR-182133.
4.
Turner
,
E. R.
,
Wilson
,
M. D.
,
Hylton
,
L. D.
, and
Kauffman
,
R. M.
,
1985
, “
Turbine Vane External Heat Transfer. Volume 1: Analytical and Experimental Evaluation of Surface Heat Transfer Distributions With Leading Edge Showerhead Film Cooling
,”
NASA
Lewis Research Center, Cleveland, OH, Report No. NASA-CR-174827.
5.
Papanicolaou
,
E.
,
Giebert
,
D.
,
Koch
,
R.
, and
Schulz
,
A.
,
2001
, “
A Conservation-Based Discretization Approach for Conjugate Heat Transfer Calculations in Hot-Gas Ducting Turbomachinery Components
,”
Int. J. Heat Mass Transfer
,
44
(
18
), pp.
3413
3429
.
6.
Panda
,
R. K.
, and
Prasad
,
B. V. S. S. S.
,
2012
, “
Conjugate Heat Transfer From a Flat Plate With Combined Impingement and Film Cooling
,”
ASME
Paper No. GT2012-68830.
7.
Sweeney
,
P. C.
, and
Rhodes
,
J. F.
,
2000
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(
1
), pp.
170
177
.
8.
Maikell
,
J.
,
Bogard
,
D.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2011
, “
Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects
,”
ASME J. Turbomach.
,
133
(
1
), p.
011014
.
9.
Dobrowolski
,
L. D.
,
Bogard
,
D. G.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2009
, “
Numerical Simulation of a Simulated Film Cooled Turbine Blade Leading Edge Including Conjugate Heat Transfer Effects
,”
ASME
Paper No. IMECE2009-11670.
10.
Mouzon
,
B. D.
,
Terrell
,
E. J.
,
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,”
ASME
Paper No. GT2005-69002.
11.
Ravelli
,
S.
,
Dobrowolski
,
L.
, and
Bogard
,
D. G.
,
2010
, “
Evaluating the Effects of Internal Impingement Cooling on a Film Cooled Turbine Blade Leading Edge
,”
ASME
Paper No. GT2010-23002.
12.
Williams
,
R. P.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2014
, “
Sensitivity of the Overall Effectiveness to Film Cooling and Internal Cooling on a Turbine Vane Suction Side
,”
ASME J. Turbomach.
,
136
(
3
), p.
031006
.
13.
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2012
, “
Evaluation of CFD Simulations of Film Cooling Performance on a Turbine Vane Including Conjugate Heat Transfer Effects
,”
ASME
Paper No. GT2012-69107.
14.
Stewart
,
W. R.
, and
Bogard
,
D. G.
,
2014
, “
Experimental Thermal Field Measurements of Film Cooling Above the Suction Surface of a Turbine Vane
,”
ASME
Paper No. GT2014-27111.
15.
Mensch
,
A.
, and
Thole
,
K. A.
,
2014
, “
Overall Effectiveness of a Blade Endwall With Jet Impingement and Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031901
.
16.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Heat Transfer for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
1
), p.
011019
.
17.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
(
3
), pp.
558
568
.
18.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
High Free-Steam Turbulence Effects on Endwall Heat Transfer for a Gas Turbine Stator Vane
,”
ASME J. Turbomach.
,
122
(
4
), pp.
699
708
.
19.
Kang
,
M. B.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
,
122
(
3
), pp.
458
466
.
20.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME
Paper No. GT2007-27579.
21.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2010
, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
132
(
1
), p.
011013
.
22.
Lynch
,
S. P.
,
2011
, “
The Effect of Endwall Contouring on Boundary Layer Development in a Turbine Blade Passage
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
23.
Saha
,
A. K.
, and
Acharya
,
S.
,
2008
, “
Computations of Turbulent Flow and Heat Transfer Through a Three-Dimensional Nonaxisymmetric Blade Passage
,”
ASME J. Turbomach.
,
130
(
3
), p.
031008
.
24.
Hollworth
,
B. R.
, and
Dagan
,
L.
,
1980
, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface—Part 1: Average Heat Transfer
,”
J. Eng. Power
,
102
(
4
), pp.
994
999
.
25.
Mensch
,
A.
,
Thole
,
K. A.
, and
Craven
,
B. A.
,
2014
, “
Conjugate Heat Transfer Measurements and Predictions of a Blade Endwall With a Thermal Barrier Coating
,”
ASME J. Turbomach.
,
136
(
12
), p.
121003
.
26.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
4
), p.
041003
.
27.
Lawson
,
S. A.
,
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2013
, “
Simulations of Multiphase Particle Deposition on a Nonaxisymmetric Contoured Endwall With Film-Cooling
,”
ASME J. Turbomach.
,
135
(
3
), p.
031032
.
28.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
29.
Mensch
,
A.
, and
Thole
,
K. A.
,
2015
, “
Conjugate Heat Transfer Analysis of the Effects of Impingement Channel Height for a Turbine Blade Endwall
,”
Int. J. Heat Mass Transfer
,
82
, pp.
66
77
.
30.
ANSYS
,
2010
, FLUENT 13.0.0,
ANSYS, Inc.
,
Cannonsburg, PA
.
31.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
32.
Pointwise
,
2013
, Pointwise 17.1r3,
Pointwise
,
Fort Worth, TX
.
33.
LaVision
,
2012
, DaVis 8.1.4,
LaVision
,
Ypsilanti, MI
.
34.
Foroutan
,
H.
, and
Yavuzkurt
,
S.
,
2014
, “
Simulation of the Near-Field Region of Film Cooling Jets Using RANS and Hybrid URANS/LES Models
,”
ASME
Paper No. GT2014-25959.
35.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.
36.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
You do not currently have access to this content.