This study comprehensively illustrates the effect of Reynolds number, hole spacing, nozzle-to-target distance, and target plate thickness on the conjugate heat transfer (CHT) performance of an impinging jet array. Test models are composed of a specific thermal-conductivity material which exerts a matched model Biot number to that of engine condition. High-resolution temperature measurements are conducted on the impinging-target plate utilizing steady liquid crystal (SLC) with Reynolds numbers ranging from 5000 to 27,500. Different streamwise and spanwise jet-to-jet spacing (i.e., X/D and Y/D: 4–8), nozzle-to-target plate distance (Z/D: 0.75–3), and target plate thickness (t/D: 0.75–2.75) are employed to compose a total of 108 different geometries. Experimental measured temperature is utilized as boundary conditions to conduct finite element simulation. Local and averaged nondimensional temperature and averaged temperature uniformity of target plate “hot side” are obtained. Optimum hole spacing arrangements, impingement distance, and target plate thickness are pointed out to minimize hot side temperature, amount of cooling air and to maximize temperature uniformity. Also included are 2D predictions with different convective boundary conditions, i.e., local 2D distribution and row-averaged heat transfer coefficients (HTCs), to estimate the accuracy of temperature prediction in comparison with the conjugate results.

References

1.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
, p. 275653.
2.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C.-P.
, and
Stevens
,
C. W.
,
2004
, “
In-Wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils
,”
ASME
Paper No. GT2004-54260.
3.
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2010
, “
Turbine Airfoil Aerothermal Characteristics in Future Coal—Gas-Based Power Generation Systems
,”
Heat Transfer Res.
,
41
(
7
), pp.
737
752
.
4.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2005
, “
The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
358
365
.
5.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
6.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2011
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-Rib Roughened Plate With Different Crossflow Schemes
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1293
1307
.
7.
Bunker
,
R. S.
,
2006
, “
Gas Turbine Heat Transfer: 10 Remaining Hot Gas Path Challenges
,”
ASME
Paper No. GT2006-90002.
8.
Liang
,
G.
,
2009
, “
Turbine Airfoil With Multiple Near Wall Compartment Cooling
,” Florida Turbine Technologies, Inc., Jupiter, FL, U.S. Patent No.
7556476 B1
.
9.
Goodro
,
M.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2010
, “
Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets
,”
J. Thermophys. Heat Transfer
,
24
(
1
), pp.
133
144
.
10.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2008
, “
Effects of Hole Spacing on Spatially-Resolved Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(25–26), pp.
6243
6253
.
11.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2009
, “
Effect of Temperature Ratio on Jet Array Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
1
), p.
012201
.
12.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2007
, “
Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
367
380
.
13.
Rahman
,
M. M.
, and
Lallave
,
J. C.
,
2007
, “
A Comprehensive Study of Conjugate Heat Transfer During Free Liquid Jet Impingement on a Rotating Disk
,”
Numer. Heat Transfer, Part A
,
51
(
11
), pp.
1041
1064
.
14.
Wang
,
X. S.
,
Dagan
,
Z.
, and
Jiji
,
L. M.
,
1989
, “
Heat Transfer Between a Circular Free Impinging Jet and a Solid Surface With Non-Uniform Wall Temperature or Wall Heat Flux 1—1. Solution for the stagnation region
,”
Int. J. Heat Mass Transfer
,
32
(
7
), pp.
1351
1370
.
15.
Vader
,
D. T.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
,
1991
, “
Local Convective Heat Transfer From a Heated Surface to an Impinging Planar Jet of Water
,”
Int. J. Heat Mass Transfer
,
34
(
3
), pp.
611
632
.
16.
Bula
,
A. J.
,
Rahman
,
M. M.
, and
Leland
,
J. E.
,
2000
, “
Numerical Modeling of Conjugate Heat Transfer During Impingement of Free Liquid Jet Issuing From a Slot Nozzle
,”
Numer. Heat Transfer, Part A
,
38
(1), pp.
45
66
.
17.
El-Jummah
,
A. M.
,
Hussain
,
R. A. A. A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2014
, “
Conjugate Heat Transfer Computational Fluid Dynamic Predictions of Impingement Heat Transfer: The Influence of Hole Pitch to Diameter Ratio X/D at Constant Impingement Gap Z
,”
ASME J. Turbomach.
,
136
(
12
), pp.
1
16
.
18.
El-Jummah
,
A. M.
,
Hussain
,
R. A. A. A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2014
, “
Conjugate Heat Transfer CFD Predictions of Impingement Heat Transfer: Influence of the Number of Holes for a Constant Pitch to Diameter Ratio X/D
,”
ASME
Paper No. GT-25268.
19.
El-Jummah
,
A. M.
,
Hussain
,
R. A. A. A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2013
, “
Conjugate Heat Transfer CFD Predictions of the Surface Averaged Impingement With Backside Cross-Flow
,”
ASME
Paper No. IMECE-63580.
20.
Coletti
,
F.
,
Scialanga
,
M.
, and
Arts
,
T.
,
2012
, “
Experimental Investigation of Conjugate Heat Transfer in a Rib-Roughened Trailing Edge Channel With Crossing Jets
,”
ASME J. Turbomach.
,
134
(4), p.
041016
.
21.
Cukurel
,
B.
, and
Arts
,
T.
,
2013
, “
Local Heat Transfer Dependency on Thermal Boundary Condition in Ribbed Cooling Channel Geometries
,”
ASME J. Heat Transfer
,
135
(10), p.
101001
.
22.
Li
,
W.
,
Chi
,
Z.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Experimental Investigation of Heat Transfer Dependency on Conjugate and Convective Thermal Boundary Conditions in Pin Fin Channel
,”
ASME
Paper No. GT2015-42872.
23.
Li
,
W.
,
Yang
,
L.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2016
, “
Effect of Reynolds Number, Hole Patterns and Hole Inclination on Cooling Performance of an Impinging Jet Array—Part I: Convective Heat Transfer Results and Optimization
,”
ASME
Paper No. GT2016-56205.
24.
Li
,
W.
,
Yang
,
L.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Effect of Thermal Boundary Conditions and Thermal Conductivity on Conjugate Heat Transfer Performance in Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
95
, pp.
579
592
.
25.
Rao
,
Y.
, and
Zang
,
S. S.
,
2010
, “
Calibrations and the Measurement Uncertainty of Wide-Band Liquid Crystal Thermography
,”
Meas. Sci. Technol.
,
21
(
1
), p.
015105
.
26.
Facchini
,
B.
,
Tarchi
,
L.
,
Toni
,
L.
, and
Ceccherini
,
A.
,
2010
, “
Adiabatic and Overall Effectiveness Measurements of an Effusion Cooling Array for Turbine Endwall Application
,”
ASME J. Turbomach.
,
132
(
4
), p.
041008
.
27.
Egger
,
C.
,
von Wolfersdorf
,
J.
, and
Schnieder
,
M.
,
2014
, “
Combined Experimental/Numerical Method Using Infrared Thermography and Finite Element Analysis for Estimation of Local Heat Transfer Distribution in an Internal Cooling System
,”
ASME J. Turbomach.
,
136
(
6
), p.
061005
.
28.
Kline
,
S. J.
, and
McClintok
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. J.
,
75
(
1
), pp.
3
8
.
29.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P. M.
,
Fox
,
M. D.
, and
Moon
,
H.-K.
,
2015
, “
Crossflows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects
,”
Int. J. Therm. Sci.
,
88
, pp.
7
18
.
30.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.
31.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
32.
Bailey
,
J. C.
, and
Bunker
,
R. S.
,
2002
, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,”
ASME
Paper No. GT2002-30473.
33.
Goldstein
,
R.
, and
Seol
,
W. S.
,
1991
, “
Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2133
2147
.
You do not currently have access to this content.