In this paper, we describe the design, modeling, and experimental testing of a film cooling scheme employed on an unshrouded high-pressure (HP) rotor casing. The casing region has high thermal loads at both low and high frequency, with the flow being dominated by the potential field of the rotor and over-tip leakage flows. Increasingly high turbine entry temperatures necessitate internal and film cooling of the casing to ensure satisfactory service life and performance. There are, however, very few published studies presenting computational fluid dynamics (CFD) and experimental data for cooled rotor casings. Experimental testing was performed on a film-cooled rotor casing in the Oxford Turbine Research Facility (OTRF)—a rotating transonic facility of engine scale. Unsteady CFD of an HP rotor blade row with a film-cooled casing was undertaken, uniquely with a domain utilizing a sliding interface in the tip gap. A high density array of thin film heat flux gauges (TFHFGs) was used to obtain time-resolved and time-mean results of adiabatic wall temperature and film cooling effectiveness on the film-cooled rotor casing between −30% and +125% rotor tip axial chord. Results are compared to CFD predictions, and mechanisms for interaction of the coolant with the rotor tip are proposed and discussed. Acoustic effects within casing coolant holes due to the passing of the rotor are demonstrated on a 3D CFD geometry, supporting conclusions drawn in earlier work by the authors on the importance of this effect in a casing film cooling system.

References

1.
Chana
,
K. S.
, and
Haller
,
B.
,
2009
, “
Novel Turbine Rotor Shroud Film-Cooling Design and Validation—Part 1
,”
ASME
Paper No. GT2009-60242.
2.
Chana
,
K. S.
, and
Haller
,
B.
,
2009
, “
Novel Turbine Rotor Shroud Film-Cooling Design and Validation—Part 2
,”
ASME
Paper No. GT2009-60246.
3.
Liotta
,
G. C.
, and
Acquaviva
,
P. J.
,
1999
, “
Dual Cooled Shroud
,”
U.S. Patent No. US5993150
.
4.
Lee
,
C.-P.
, and
Durgin
,
G. A.
,
2001
, “
Preferentially Cooled Turbine Shroud
,”
U.S. Patent No. US6196792
.
5.
White
,
G. A.
, and
Lee
,
C.-P.
,
2002
, “
Shroud Cooling Segment and Assembly
,”
U.S. Patent No. US6354795
.
6.
Lowe
,
C. C.
,
Powis
,
A. C.
, and
Clarke
,
J. P.
,
2006
, “
Turbine Shroud Asymmetrical Cooling Elements
,” U.S. Patent No. US7147432.
7.
Shapiro
,
J. D.
,
2007
, “
Counterflow Film Cooled Wall
,” U.S. Patent No. US7296967.
8.
Lee
,
C.-P.
,
Robinson
,
G. D.
, and
Orlando
,
J. P.
,
2012
, “
Duplex Turbine Shroud
,”
U.S. Patent No. US8104292
.
9.
Collins
,
M. C. J.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2015
, “
Improved Methodologies for Time Resolved Heat Transfer Measurements, Demonstrated on an Unshrouded Transonic Turbine Casing
,”
ASME
Paper No. GT2015-43346.
10.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2008
, “
Control of Rotor Tip Leakage Through Cooling Injection From the Casing in a High-Work Turbine
,”
ASME J. Turbomach.
,
130
(
3
), p.
031014
.
11.
Collins
,
M. C. J.
, and
Povey
,
T.
,
2015
, “
Exploitation of Acoustic Effects in Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
102602
.
12.
Mischo
,
B.
,
Burdet
,
A.
,
Behr
,
T.
, and
Abhari
,
R. S.
,
2007
, “
Reduction of Rotor Tip Leakage Through Cooling Injection From the Casing in a High-Work Turbine: Computational Investigation Using a Feature-Based Jet Model
,”
ASME
Paper No. GT2007-27669.
13.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Norton
,
R. J. G.
, and
Cao
,
Y.
,
1985
, “
Time Resolved Measurements of a Turbine Rotor Stationary Tip Casing Pressure and Heat Transfer Field
,”
21st AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference
, Monterey, CA,
AIAA
Paper No. 85-1220.
14.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
(
3
), pp.
502
507
.
15.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
,
2003
, “
Turbine Tip and Shroud Heat Transfer and Loading—Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas-to-Metal Temperature Ratio
,”
ASME J. Turbomach.
,
125
(
1
), pp.
97
106
.
16.
ANSYS
,
2009
, “
ANSYS Fluent, Release 12.0, User's Guide
,”
ANSYS, Inc.
,
Canonsburg, PA
.
17.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.
18.
Moore
,
J. O. H. N.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.
19.
Heyes
,
F. J. G.
,
Dailey
,
G. M.
, and
Hodson
,
H. P.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.
20.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1992
, “
Prediction of Tip-Leakage Losses in Axial Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
204
210
.
21.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
22.
Yaras
,
M. L.
, and
Sjolander
,
S. A.
,
1991
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades—Part I: Tip Gap Flow
,”
ASME
Paper No. 91-GT-127.
23.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1991
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades—Part II: Downstream Flow Field and Blade Loading
,”
ASME
Paper No. 91-GT-128.
24.
Chana
,
K.
,
Cardwell
,
D.
, and
Jones
,
T.
,
2013
, “
A Review of the Oxford Turbine Research Facility
,”
ASME
Paper No. GT2013-95687.
25.
Jones
,
T. V.
,
1995
, “
The Thin Film Heat Transfer Gauges—A History and New Developments
,”
4th National UK Heat Transfer Conference, IMechE Conference Transaction
, Manchester, UK, Sept. 26–27, pp.
1
12
.
26.
Collins
,
M. C. J.
,
Chana
,
K.
, and
Povey
,
T.
,
2014
, “
New Technique for the Fabrication of Miniature Thin Film Heat Flux Gauges
,”
Meas. Sci. Technol.
,
26
(
2
), pp.
25303
25312
.
27.
Chana
,
K. S.
, and
Jones
,
T. V.
,
2003
, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
125
(
3
), pp.
513
520
.
28.
Oldfield
,
M. L.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
You do not currently have access to this content.