This paper presents a novel tool for the shape optimization of turbomachinery blade profiles operating with fluids in non-ideal thermodynamic conditions and in complex flow configurations. In novel energy conversion systems, such as organic Rankine cycles or supercritical CO2 cycles, the non-conventional turbomachinery layout as well as the complex thermodynamics of the working fluid complicate significantly the blade aerodynamic design. For such applications, the design of turbomachinery may considerably benefit from the use of systematic optimization methods, especially in combination with high-fidelity computational fluid dynamics (CFD), as it is shown in this paper. The proposed technique is implemented in the shape-optimization package FORMA (Fluid-dynamic OptimizeR for turbo-Machinery Aerofoils) developed in-house at the Politecnico di Milano. FORMA is constructed as a combination of a generalized geometrical parametrization technique based on B-splines, a CFD solver featuring turbulence models and arbitrary equations of state, and multiple surrogate-based evolutionary strategies based on either trust-region or training methods. The application to the re-design of a supersonic turbine nozzle shows the capabilities of applying a high-fidelity optimization, consisting of a 50% reduction in the cascade loss coefficient and in an increased flow uniformity at the inlet of the subsequent rotor. Two alternative surrogate-based evolutionary strategies and different fitness functions are tested and discussed, including nonlinear constraints within the design process. The optimization study reveals relevant insights into the design of supersonic turbine nozzles as well on the performance, reliability, and potential of the proposed design technique.

References

1.
Persico
,
G.
, and
Pini
,
M.
,
2017
, “8—Fluid Dynamic Design of Organic Rankine Cycle Turbines,”
Organic Rankine Cycle (ORC) Power Systems
,
E.
Macchi
, and
M.
Astolfi
, eds.,
Woodhead Publishing
,
Sawston, UK
, pp.
253
297
.
2.
Pini
,
M.
,
Persico
,
G.
,
Casati
,
E.
, and
Dossena
,
V.
,
2013
, “
Preliminary Design of a Centrifugal Turbine for ORC Applications
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042312
.
3.
Persico
,
G.
, and
Rebay
,
S.
,
2012
, “
A Penalty Formulation for the Throughflow Modeling of Turbomachinery
,”
Comput. Fluids
,
60
, pp.
86
98
.
4.
Demeulenaere
,
A.
,
Leonard
,
O.
, and
Van Den Braembussche
,
R.
,
1997
, “
A Two-Dimensional Navier–Stokes Inverse Solver for Compressor and Turbine Blade Design
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
4
), pp.
299
307
.
5.
Peter
,
J.
, and
Dwight
,
R.
,
2010
, “
Numerical Sensitivity Analysis for Aerodynamic Optimization: A Survey of Approaches
,”
Comput. Fluids
,
39
(
3
), pp.
373
391
.
6.
Pini
,
M.
,
Persico
,
G.
,
Pasquale
,
D.
, and
Rebay
,
S.
,
2015
, “
Adjoint Method for Shape Optimization in Real-gas Flow Applications
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032604
.
7.
Vitale
,
S.
,
Albring
,
T.
,
Pini
,
M.
,
Gauger
,
N.
, and
Colonna
,
P.
,
2017
, “
Fully Turbulent Discrete Adjoint Solver for non-Ideal Compressible Flow Applications
,”
J. Global Power Propul. Soc.
,
1
, pp.
252
270
.
8.
Pierret
,
S.
,
Coelho
,
R.
, and
Kato
,
H.
,
2006
, “
Multidisciplinary and Multiple Operating Points Shape Optimization of Three-Dimensional Compressor Blades
,”
Struct. Multidiscip. Optim.
,
33
(
1
), pp.
61
70
.
9.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van Den Braembussche
,
R.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.
10.
Pasquale
,
D.
,
Ghidoni
,
A.
, and
Rebay
,
S.
,
2013
, “
Shape Optimization of an Organic Rankine Cycle Radial Turbine Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042308
.
11.
Coello
,
C.
,
2000
, “
An Updated Survey of GA-Based Multiobjective Optimization Techniques
,”
ACM Comput. Surv.
,
32
(
2
), pp.
109
143
.
12.
Pierret
,
S.
, and
Van den Braembussche
,
R. A.
,
1999
, “
Turbomachinery Blade Design Using a Navier–Stokes Solver and Artificial Neural Network
,”
ASME J. Turbomach.
,
121
(
2
), pp.
326
332
.
13.
Simpson
,
T.
,
Poplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
14.
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD: A Practical Guide
, 5th ed.,
Morgan Kaufmann Publishers Inc
,
San Francisco, CA
.
15.
Barth
,
T. J.
, and
Jesperson
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
”,
AIAA
Paper No. 89-0366.
16.
Persico
,
G.
,
Mora
,
A.
,
Gaetani
,
P.
, and
Savini
,
M.
,
2012
, “
Unsteady Aerodynamics of a Low Aspect Ratio Turbine Stage: Modeling Issues and Flow Physics
,”
ASME J. Turbomach.
,
134
(
6
), p.
061030
.
17.
Reeves
,
C. R.
, and
Rowe
,
J. E.
,
2002
,
Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory
,
Kluwer Academic Publishers
,
Norwell, MA
.
18.
Toropov
,
V. V.
,
Filatov
,
A. A.
, and
Polynkin
,
A. A.
,
1993
, “
Multiparameter Structural Optimization Using FEM and Multipoint Explicit Approximations
”,
Struct. Optim.
,
6
(
1
), pp.
7
14
.
19.
Giunta
,
A. A.
, and
Eldred
,
M. S.
,
2000
, “
Implementation of a Trust Region Model Management Strategy in the Dakota Optimization Toolkit
,”
8th Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, CA
,
Sept. 6–8, 2000
.
20.
Pini
,
M.
,
Persico
,
G.
, and
Dossena
,
V.
,
2014
, “
Robust Adjoint-Based Shape Optimization of Supersonic Turbomachinery Cascades
”,
ASME
Paper No. GT2014-27064.
21.
Adams
,
B. M.
,
Bauman
,
L. E.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Ebeida
,
M. S.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Hough
,
P. D.
,
Hu
,
K. T.
,
Jakeman
,
J. D.
,
Stephens
,
J. A.
,
Swiler
,
L. P.
,
Vigil
,
D. M.
, and
Wildey
,
T. M.
,
2017
, “
Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.6 User’s Manual
,”
Sandia Technical Report
SAND2014-4633, Updated May 2017.https//dakota.sandia.gov/sites/default/files/docs/6.6/Users-6.6.0.pdf
22.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
AIAA J. Propul. Power
,
24
(
2
), pp.
282
294
.
23.
Colonna
,
P.
,
Nannan
,
N.
, and
Guardone
,
A.
,
2008
, “
Multiparameter Equations of State for Siloxanes:[(CH3)3-Si-O1/2]2-[O-Si-(CH3)2]i=1,…,3, and [O-Si-(CH3)2]6
,”
Fluid Phase Equilibr.
,
263
(
2
), pp.
115
130
.
24.
Romei
,
A.
, and
Persico
,
G.
,
2018
, “
Novel Shape Parametrization Technique Applied to the Optimization of a Supersonic ORC Turbine Cascade
”,
ASME
Paper No. GT2018-76732.
You do not currently have access to this content.