Abstract
The design of film cooling systems relies heavily on Reynolds-averaged Navier–Stokes (RANS) simulations, which solve for mean quantities and model all turbulent scales. Most turbulent heat flux models, which are based on isotropic diffusion with a fixed turbulent Prandtl number (Prt), fail to accurately predict heat transfer in film cooling flows. In the present work, machine learning models are trained to predict a non-uniform Prt field using various datasets as training sets. The ability of these models to generalize beyond the flows on which they were trained is explored. Furthermore, visualization techniques are employed to compare distinct datasets and to help explain the cross-validation results.
References
1.
Bogard
, D. G.
, and Thole
, K. A.
, 2006
, “Gas Turbine Film Cooling
,” J. Propul. Power
, 22
(2
), pp. 249
–270
. 10.2514/1.180342.
Nikparto
, A.
, Rice
, T.
, and Schobeiri
, M. T.
, 2017
, “Experimental and Numerical Investigation of Heat Transfer and Film Cooling Effectiveness of a Highly Loaded Turbine Blade Under Steady and Unsteady Wake Flow Condition
,” ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, Charlotte, NC
, June 26–30
, American Society of Mechanical Engineers
, p. V05CT19A029
–V05CT19A029
.3.
Kays
, W. M.
, 1994
, “Turbulent Prandtl Number — Where Are We?
,” ASME J. Heat Transfer
, 116
(2
), pp. 284
–295
. 10.1115/1.29113984.
Kohli
, A.
, and Bogard
, D. G.
, 2005
, “Turbulent Transport in Film Cooling Flows
,” ASME J. Heat Transfer
, 127
(5
), pp. 513
–520
. 10.1115/1.18652215.
Muppidi
, S.
, and Mahesh
, K.
, 2008
, “Direct Numerical Simulation of Passive Scalar Transport in Transverse Jets
,” J. Fluid Mech.
, 598
, pp. 335
–360
. 10.1017/S00221120070000556.
Schreivogel
, P.
, Abram
, C.
, Fond
, B.
, Straußwald
, M.
, Beyrau
, F.
, and Pfitzner
, M.
, 2016
, “Simultaneous kHz-rate Temperature and Velocity Field Measurements in the Flow Emanating From Angled and Trenched Film Cooling Holes
,” Int. J. Heat. Mass. Transfer
, 103
, pp. 390
–400
. 10.1016/j.ijheatmasstransfer.2016.06.0927.
Oliver
, T. A.
, Anderson
, J. B.
, Bogard
, D. G.
, Moser
, R. D.
, and Laskowski
, G.
, 2017
, “Implicit LES for Shaped-Hole Film Cooling Flow
,” ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, Charlotte, NC
, June 26–30
, American Society of Mechanical Engineers
, New York
, p. V05AT12A005
.8.
Daly
, B. J.
, and Harlow
, F. H.
, 1970
, “Transport Equations in Turbulence
,” Phys. Fluids
, 13
(11
), pp. 2634
–2649
. 10.1063/1.16928459.
Abe
, K.
, and Suga
, K.
, 2001
, “Towards the Development of a Reynolds-Averaged Algebraic Turbulent Scalar-Flux Model
,” Int. J. Heat Fluid Flow
, 22
(1
), pp. 19
–29
. 10.1016/S0142-727X(00)00062-X10.
Ling
, J.
, Ryan
, K. J.
, Bodart
, J.
, and Eaton
, J. K.
, 2016
, “Analysis of Turbulent Scalar Flux Models for a Discrete Hole Film Cooling Flow
,” ASME J. Turbomach.
, 138
(1
), p. 011006
. 10.1115/1.403169811.
Ryan
, K. J.
, Bodart
, J.
, Folkersma
, M.
, Elkins
, C. J.
, and Eaton
, J. K.
, 2017
, “Turbulent Scalar Mixing in a Skewed Jet in Crossflow: Experiments and Modeling
,” Flow, Turbulence Combust.
, 98
(3
), pp. 781
–801
. 10.1007/s10494-016-9785-712.
Bishop
, C.
, 2006
, Pattern Recognition and Machine Learning
, Springer
, New York, NY
.13.
Ling
, J.
, Kurzawski
, A.
, and Templeton
, J.
, 2016
, “Reynolds Averaged Turbulence Modelling Using Deep Neural Networks with Embedded Invariance
,” J. Fluid Mech.
, 807
, pp. 155
–166
. 10.1017/jfm.2016.61514.
Sandberg
, R.
, Tan
, R.
, Weatheritt
, J.
, Ooi
, A.
, Haghiri
, A.
, Michelassi
, V.
, and Laskowski
, G.
, 2018
, “Applying Machine Learnt Explicit Algebraic Stress and Scalar Flux Models to a Fundamental Trailing Edge Slot
,” ASME J. Turbomach.
, 140
(10
), p. 101008
. 10.1115/1.404126815.
Singh
, A. P.
, Medida
, S.
, and Duraisamy
, K.
, 2017
, “Machine-Learning-Augmented Predictive Modeling of Turbulent Separated Flows Over Airfoils
,” AIAA J.
, 55
(7
), pp. 2215
–2227
. 10.2514/1.J05559516.
Milani
, P. M.
, Ling
, J.
, Saez-Mischlich
, G.
, Bodart
, J.
, and Eaton
, J. K.
, 2018
, “A Machine Learning Approach for Determining the Turbulent Diffusivity in Film Cooling Flows
,” ASME J. Turbomach.
, 140
(2
), p. 021006
. 10.1115/1.403827517.
Ling
, J.
, Jones
, R.
, and Templeton
, J.
, 2016
, “Machine Learning Strategies for Systems with Invariance Properties
,” J. Comput. Phys.
, 318
, pp. 22
–35
. 10.1016/j.jcp.2016.05.00318.
Shih
, T.-H.
, Zhu
, J.
, and Lumley
, J. L.
, 1995
, “A New Reynolds Stress Algebraic Equation Model
,” Comput. Methods Appl. Mech. Eng.
, 125
(1
), pp. 287
–302
. 10.1016/0045-7825(95)00796-419.
Ling
, J.
, and Templeton
, J.
, 2015
, “Evaluation of Machine Learning Algorithms for Prediction of Regions of High Reynolds Averaged Navier Stokes Uncertainty
,” Phys. Fluids
, 27
(8
), p. 085103
. 10.1063/1.492776520.
Pedregosa
, F.
, Varoquaux
, G.
, Gramfort
, A.
, Michel
, V.
, Thirion
, B.
, Grisel
, O.
, Blondel
, M.
, Prettenhofer
, P.
, Weiss
, R.
, Dubourg
, V.
, Vanderplas
, J.
, Passos
, A.
, Cournapeau
, D.
, Brucher
, M.
, Perrot
, M.
, and Duchesnay
, E.
, 2011
, “Scikit-Learn: Machine Learning in Python
,” J. Machine Learning
, 12
(Oct.
), pp. 2825
–2830
.21.
22.
Bodart
, J.
, Coletti
, F.
, Bermejo-Moreno
, I.
, and Eaton
, J.
, 2013
, “High-Fidelity Simulation of a Turbulent Inclined Jet in a Crossflow
,” Center Turbulence Res. Annu. Res. Briefs
, pp. 263
–275
.23.
Vreman
, A.
, 2004
, “An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications
,” Phys. Fluids
, 16
(10
), pp. 3670
–3681
. 10.1063/1.178513124.
Milani
, P. M.
, Gunady
, I. E.
, Ching
, D. S.
, Banko
, A. J.
, Elkins
, C. J.
, and Eaton
, J. K.
, 2019
, “Enriching MRI Mean Flow Data of Inclined Jets in Crossflow with Large Eddy Simulations
,” Int. J. Heat Fluid Flow
, 80
, p. 108472
. 10.1016/j.ijheatfluidflow.2019.10847225.
Folkersma
, M.
, and Bodart
, J.
, 2018
, “Large Eddy Simulation of an Asymmetric Jet in Crossflow
,” Direct Large-Eddy Simul. X
, pp. 85
–91
.26.
Rossi
, R.
, Philips
, D.
, and Iaccarino
, G.
, 2010
, “A Numerical Study of Scalar Dispersion Downstream of a Wall-Mounted Cube Using Direct Simulations and Algebraic Flux Models
,” Int. J. Heat Fluid Flow
, 31
(5
), pp. 805
–819
. 10.1016/j.ijheatfluidflow.2010.05.00627.
Ling
, J.
, Rossi
, R.
, and Eaton
, J. K.
, 2015
, “Near Wall Modeling for Trailing Edge Slot Film Cooling
,” J. Fluids Eng.
, 137
(2
), p. 021103
. 10.1115/1.402849828.
Milani
, P. M.
, and Eaton
, J. K.
, 2018
, “Magnetic Resonance Imaging, Optimization, and Machine Learning to Understand and Model Turbulent Mixing
,” 21st Australasian Fluid Mechanics Conference, Australasian Fluid Mechanics Society
, Adelaide, Australia
, Dec. 10–13
.29.
Milani
, P. M.
, Ling
, J.
, and Eaton
, J. K.
, 2019
, “Physical Interpretation of Machine Learning Models Applied to Film Cooling Flows
,” ASME J. Turbomach.
, 141
(1
), p. 011004
. 10.1115/1.404129130.
Bro
, R.
, and Smilde
, A. K.
, 2014
, “Principal Component Analysis
,” Anal. Methods
, 6
(9
), pp. 2812
–2831
. 10.1039/C3AY41907J31.
Maaten
, L. v. d.
, and Hinton
, G.
, 2008
, “Visualizing Data Using T-SNE
,” J. Machine Learning Res.
, 9
(Nov
.), pp. 2579
–2605
.32.
Wu
, J.
, Wang
, J.
, Xiao
, H.
, and Ling
, J.
, 2017
, “Visualization of High Dimensional Turbulence Simulation Data Using t-SNE
,” 19th AIAA Non-Deterministic Approaches Conference, American Institute of Aeronautics and Astronautics
, Grapevine, TX
, Jan. 9–13
, p. 1770
.Copyright © 2019 by ASME
You do not currently have access to this content.