Abstract

This paper presents the large Eddy simulation (LES) of a propeller representative of the first rotor of a counter rotative open rotor (CROR) configuration based on a multiple frequency phase-lagged approach in conjunction with a proper orthogonal decomposition (POD) data storage. This method enables to perform unsteady simulations on multistage turbomachinery configurations including multiple frequency flows with a reduction of the computational domain composed of one single blade passage for each row. This approach is advantageous when no circumferential periodicity occurs in the blade rows of the configuration and a full 360 deg simulation would be required. The data storage method is based on a POD decomposition replacing the traditional Fourier series decomposition (FSD). The inherent limitation of phase-shifted periodicity assumption remains with POD data storage but this compression method alleviates some issues associated with the Fourier transform, especially spectrum issues. The paper is first dedicated to compare the flow field obtained with the LES with phase-lagged condition against full-matching URANS, LES simulations, and experimental data available around the blade and in the wake of the rotor. The study shows a close agreement of the phase-lagged LES simulation with other simulations performed and a thicker wake compared with the experiments with lower turbulent activity. The analysis of the losses generated in the configuration, based on an entropy formulation and a splitting between boundary layer and secondary flow structures, shows the strong contribution of the blade boundary layer in the losses generated.

References

1.
Schnell
,
R.
,
Yin
,
J.
,
Voss
,
C.
, and
Nicke
,
E.
,
2012
, “
Assessment and Optimization of the Aerodynamic and Acoustic Characteristics of a Counter Rotating Open Rotor
,”
ASME J. Turbomach.
,
134
(
6
), p.
061016
. 10.1115/1.4006285
2.
Van Zante
,
D. E.
,
2015
, “
Progress in Open Rotor Research: A U.S. Perspective
,”
Proceedings of the ASME Turbo Expo Volume 1: Aircraft Engine; Fans and Blowers; Marine
,
Montreal, Quebec, Canada
,
June 15–19
, ASME, pp.
120
131
.
3.
Hendricks
,
E.
, and
Tong
,
M.
,
2012
, “
Performance and Weight Estimates for An Advanced Open Rotor Engine
,”
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition
,
Atlanta, GA
,
July 30–Aug. 1
,
AIAA
,
Atlanta, GA
, pp.
148
160
.
4.
Ricouard
,
J.
,
Julliard
,
E.
,
Omais
,
M.
,
Regnier
,
V.
,
Parry
,
A.
, and
Baralon
,
S.
,
2010
, “
Installation Effects on Contra-Rotating Open Rotor Noise
,”
20th AIAA/CEAS Aeroacoustics Conference
,
Atlanta, GA
,
June 16–20
,
AIAA
, pp.
68
79
.
5.
Lepot
,
I.
,
Leborgne
,
M.
,
Schnell
,
R.
,
Yin
,
J.
,
Delattre
,
G.
,
Falissard
,
F.
, and
Talbotec
,
J.
,
2011
, “
Aero-mechanical Optimization of a Contra-Rotating Open Rotor and Assessment of Its Aerodynamic and Acoustic Characteristics
,”
Proc. Inst. Mech. Eng., Part A: J. Power and Energy
.
6.
Carazo
,
A.
,
Roger
,
M.
, and
Omais
,
M.
,
2012
, “
Analytical Prediction of Wake-Interaction Noise in Counter-Rotating Open Rotors
,”
17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)
,
AIAA
,
Portland, OR
,
June 5–8
, pp.
228
235
.
7.
Colin
,
Y.
,
Caruelle
,
B.
, and
Parry
,
A.
,
2012
, “
Computational Strategy for Predicting CROR Noise at Low-speed Part III: Investigation of Noise Radiation with the Ffowcs-Williams Hawkings Analogy
,”
18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference)
,
Colorado Springs, CO
,
June 4–6
,
AIAA
, pp.
428
440
.
8.
Colin
,
Y.
,
Carazo
,
A.
,
Caruelle
,
B.
,
Node-Langlois
,
T.
, and
Parry
,
A.
,
2012
, “
Computational Strategy for Predicting CROR Noise At Low-speed Part I: Review of the Numerical Methods
,”
18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference)
,
Colorado Springs, CO
,
June 4–6
,
AIAA
, pp.
385
397
.
9.
Colin
,
Y.
,
Blanc
,
F.
,
Caruelle
,
B.
,
Barrois
,
F.
, and
Djordjevic
,
N.
,
2012
, “
Computational Strategy for Predicting CROR Noise At Low-speed Part II: Investigation of the Noise Sources Computation with the Chorochronic Method
,”
18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference)
,
Colorado Springs, CO
,
June 4–6
,
AIAA
, pp.
322
331
.
10.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows: An Introduction
,
Springer Science & Business Media
,
New York
.
11.
Erdos
,
J.
, and
Alzner
,
E.
,
1977
,
“Computation of Unsteady Transonic Flows Through Rotating and Stationary Cascades 1: Method of Analysis
,”
Technical Report
,
National Aeronautics and Space Administration
.
12.
He
,
L.
,
1992
, “
Method of Simulating Unsteady Turbomachinery Flows With Multiple Perturbations
,”
AIAA J.
,
30
(
11
), pp.
2730
2735
. 10.2514/3.11291
13.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Progress Aerosp. Sci.
,
46
(
8
), pp.
329
341
. 10.1016/j.paerosci.2010.04.001
14.
Berkooz
,
G.
,
2002
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
25
(
3
), pp.
539
575
. 10.1146/annurev.fl.25.010193.002543
15.
Cambier
,
L.
,
Heib
,
S.
, and
Plot
,
S.
,
2013
, “
The Onera ElsA CFD Software: Input From Research and Feedback From Industry
,”
Mech. Ind.
,
14
(
3
), pp.
159
174
. 10.1051/meca/2013056
16.
Mouret
,
G.
,
Gourdain
,
N.
, and
Castillon
,
L.
,
2015
, “
Adaptation of Phase-Lagged Boundary Conditions to Large Eddy Simulation in Turbomachinery Configurations
,”
ASME J. Turbomach.
,
138
(
4
), p.
041003
. 10.1115/1.4032044
17.
Negulescu
,
C. A.
,
2013
, “
Airbus AI-PX7 CROR Design Features and Aerodynamics
,”
SAE Int. J. Aerosp.
,
6
(
2
), pp.
626
642
. 10.4271/2013-01-2245
18.
Novara
,
M.
,
Geisler
,
R.
, and
Schröder
,
A.
,
2015
, “
Multi-Stereo PIV Measurement of Propeller Wake Flow in Industrial Facility
,”
31st AIAA Aerodynamic Measurement Technology and Ground Testing Conference
,
Dallas, TX
,
June 22–26
, AIAA, pp.
55
68
.
19.
Piomelli
,
U.
,
2008
, “
Wall-Layer Models for Large-Eddy Simulations
,”
Progress Aerosp. Sci.
,
44
(
6
), pp.
437
446
. 10.1016/j.paerosci.2008.06.001
20.
Gourdain
,
N.
,
Sicot
,
F.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2014
, “
Large Eddy Simulation of Flows in Industrial Compressors: a Path From 2015 to 2035
,”
Phil. Trans. R. Soc. A
,
372
(
2022
), p.
20130323
. 10.1098/rsta.2013.0323
21.
Pichler
,
R.
,
Zhao
,
Y.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pacciani
,
R.
,
Marconcini
,
M.
, and
Arnone
,
A.
,
2018
, “
LES and RANS Analysis of the End-Wall Flow in a Linear LPT Cascade with Variable Inlet Conditions, Part I: Flow and Secondary Vorticity Fields
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition Volume 2B: Turbomachinery
,
Oslo, Norway
,
June 11–15
,
ASME
, pp.
532
544
.
22.
Tucker
,
P. G.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 2-LES and Hybrids
,”
Progress Aerosp. Sci.
,
47
(
7
), pp.
546
569
. 10.1016/j.paerosci.2011.07.002
23.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers–The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
. 10.1243/JMES_JOUR_1980_022_043_02
24.
Casalino
,
D.
,
Hazir
,
A.
, and
Mann
,
A.
,
2017
, “
Turbofan Broadband Noise Prediction Using the Lattice Boltzmann Method
,”
AIAA J.
,
56
(
2
), pp.
132
143
. 10.2514/6.2016-2945
25.
Nishikawa
,
H.
,
Rad
,
M.
, and
Roe
,
P.
,
2013
, “
A Third-order Fluctuation Splitting Scheme that Preserves Potential Flow
,”
15th AIAA Computational Fluid Dynamics Conference
,
Anaheim, CA
,
June 11–14
, AIAA, pp.
342
352
.
26.
Wilcox
,
D. C.
,
2008
, “
Formulation of the K-ω Turbulence Model Revisited
,”
AIAA J.
,
46
, pp.
2823
2832
. 10.2514/1.36541
27.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-stepping Schemes
,”
AIAA Paper
,
6
(
2
), p.
1259
. 10.2514/6.1981-1259
28.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbulence Combustion
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
29.
Marmignon
,
C.
,
Couaillier
,
V.
, and
Courbet
,
B.
,
2011
, “
Solution Strategies for Integration of Semi-Discretized Flow Equations in ElsA and CEDRE
,”
AerospaceLab J.
,
2
(
1
), pp.
1
11
.
30.
Cliquet
,
J.
,
Houdeville
,
R.
, and
Arnal
,
D.
,
2008
, “
Application of Laminar-Turbulent Transition Criteria in Navier-Stokes Computations
,”
AIAA J.
,
46
(
5
), pp.
1182
1190
. 10.2514/1.30215
31.
Cousteix
,
J.
,
1986
, “
Three-Dimensional and Unsteady Boundary-Layer Computations
,”
Ann. Rev. Fluid Mech.
,
18
(
2
), pp.
173
196
. 10.1146/annurev.fl.18.010186.001133
32.
Schlichting
,
H.
, and
Gersten
,
K.
,
2001
,
Boundary Layer Theory
,
Springer
,
New York
, Vol.
9
.
33.
Adrian
,
R. J.
,
2005
, “
Twenty Years of Particle Image Velocimetry
,”
Exp. Fluids
,
39
(
6
), pp.
159
169
. 10.1007/s00348-005-0991-7
34.
Zlatinov
,
M. B.
,
Sooi Tan
,
C.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
. 10.1115/1.4006294
35.
Michelassi
,
V.
, and
Wissink
,
J. G.
,
2015
, “
Turbulent Kinetic Energy Production in the Vane of a Low-pressure Linear Turbine Cascade with Incoming Wakes
,”
Int. J. Rotating Mach.
,
2015
(
2
), pp.
1
15
. 10.1155/2015/650783
36.
Wheeler
,
A. P. S.
,
Sandberg
,
R.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
. 10.1115/1.4032435
37.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
,
Bertini
,
F.
, and
Michelassi
,
V.
,
2017
, “
Accurate Estimation of Profile Losses and Analysis of Loss Generation Mechanisms in a Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
12
), pp.
121
132
. 10.1115/1.4037858
38.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2017
, “
A POD-Based Procedure for the Split of Unsteady Losses of An LPT Cascade
,”
Int. J. Turbomach., Propulsion Power
,
2
(
4
), p.
17
. 10.3390/ijtpp2040017
39.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R. D.
,
Michelassi
,
V.
, and
Bertini
,
F.
,
2018
, “
Identification and Quantification of Losses in a LPT Cascade by POD Applied to LES Data
,”
Int. J. Heat Fluid Flow
,
70
, pp.
28
40
. 10.1016/j.ijheatfluidflow.2018.01.011
40.
Smith
,
L. H.
,
1987
, “
Unducted Fan Aerodynamic Design
,”
ASME J. Turbomach.
,
109
(
3
), pp.
313
324
. 10.1115/1.3262108
41.
Newmann
,
H. E.
,
Bober
,
L. J.
,
Serafini
,
J. S.
, and
Li-Ko
,
C.
,
1983
, “
Analytical and Experimental Comparison of the Flow Field of An Advanced Swept Turboprop
,”
NASA Tech. Memo.
,
11
(
3
), pp.
122
133
.
You do not currently have access to this content.