Abstract

In this paper, we study the effect of rotor-stator axial gap on midspan compressor loss using high-fidelity scale-resolving simulations. For this purpose, we mimic the multi-stage environment using a new numerical method that recycles wake unsteadiness from a single blade passage back into the inlet of the computational domain. As a result, a type of repeating-passage simulation is obtained such as observed by an embedded blade-row. We find that freestream turbulence levels rise significantly as the size of the rotor-stator axial gap is reduced. This is because of the effect of axial gap on turbulence production, which becomes amplified at smaller axial gaps and drives increases in dissipation and loss. This effect is found to raise loss by between 5.5% and 9.5% over the range of conditions tested here. This effect significantly outweighs the beneficial effects of wake recovery on loss.

References

1.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME Trans., J. Basic Eng.
,
88
(
Series No. 3
), pp.
688
690
. 10.1115/1.3645942
2.
Adamczyk
,
J. J.
,
1996
, “
Wake Mixing in Axial Flow Compressors
”.
3.
Deregel
,
P.
, and
Tan
,
C. S.
,
1996
, “
Impact of Rotor Wakes on Steady-State Axial Compressor Performance
,”
Proceedings of the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Turbomachinery
,
Birmingham, UK
,
June 10–13
,
ASME
, p.
V001T01A072
. https://doi.org/10.1115/96-GT-253
4.
Van Zante
,
D.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
,
2002
, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
(
2
), pp.
275
284
. 10.1115/1.1445793
5.
Henderson
,
A. D.
,
Walker
,
G. J.
, and
Hughes
,
J. D.
,
2008
, “
Unsteady Transition Phenomena At a Compressor Blade Leading Stage
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 6: Turbomachinery, Parts A and B
,
Barcelona, Spain
,
May 8–11
,
ASME
, pp.
1797
1810
. https://doi.org/10.1115/GT2006-90641
6.
Wheeler
,
A. P.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2007
, “
The Effect of Wake Induced Coherent Structures on Compressor Boundary Layers
,”
ASME J. Turbomach.
,
129
(
4
), pp.
705
712
. 10.1115/1.2720499
7.
Wheeler
,
A. P.
,
Sofia
,
A.
, and
Miller
,
R. J.
,
2009
, “
The Effect of Leading-Edge Geometry on Wake Interactions in Compressors
,”
ASME J. Turbomach.
,
131
(
4
), p.
041013
. 10.1115/1.3104617
8.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Durbin
,
P. A.
, and
Rodi
,
W.
,
2009
, “
Direct Computations of Boundary Layers Distorted by Migrating Wakes in a Linear Compressor Cascade
,”
Flow Turbulence Combust.
,
83
, pp.
307
322
. 10.1007/s10494-009-9216-0
9.
Leggett
,
J.
,
Priebe
,
S.
,
Shabbir
,
A.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Richardson
,
E.
,
2018
, “
Loss Prediction in An Axial Compressor Cascade At Off-Design Incidences with Free Stream Disturbances Using Large Eddy Simulation
,”
ASME J. Turbomach.
,
140
(
7
), p.
071005
. 10.1115/1.4039807
10.
Camp
,
T. R.
, and
Shin
,
H.-W.
,
1994
, “
Turbulence Intensity and Length Scale Measurements in Multistage Compressors
,”
ASME J. Turbomach.
,
117
(
1
), pp.
38
46
. 10.1115/1.2835642
11.
Wheeler
,
A. P. S.
,
Dickens
,
A. M. J.
, and
Miller
,
R. J.
,
2017
, “
The Effect of Non-Equilibrium Boundary Layers on Compressor Performance
,”
ASME. J. Turbomach.
,
140
(
10
), p.
101003
. 10.1115/gt2017-64635
12.
Przytarski
,
P.
, and
Wheeler
,
A. P. S.
,
2018
, “
Accurate Prediction of Loss Using High Fidelity Methods
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2C: Turbomachinery
,
Oslo, Norway
,
June 11–15
, ASME, p. V02CT42A051https://doi.org/10.1115/GT2018-77125.
13.
To
,
H.
, and
Miller
,
R. J.
,
2015
, “
The Effect of Aspect Ratio on Compressor Performance
,”
ASME J. Turbomach.
,
141
(
8
), p.
081011
. 10.1115/1.4043219
14.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2010
, “
Direct Numerical Simulation of Transition in a Compressor Cascade: the Influence of Free-Stream Turbulence
,”
J. Fluid. Mech.
,
665
, pp.
57
98
. 10.1017/s0022112010003873
15.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
. 10.1115/1.1811094
16.
Michelassi
,
V.
, and
Wissink
,
J. G.
,
2015
, “
Turbulent Kinetic Energy Production in the Vane of a Low-Pressure Linear Cascade With Incoming Wakes
,”
Int. J. Rotating Machinery
,
2015
, pp.
1
15
. 10.1155/2015/650783
You do not currently have access to this content.