Abstract

Reynolds-averaged Navier–Stokes (RANS) equations are employed for aerodynamic and aeroelastic modeling in axial compressors. Their solutions are highly dependent on the turbulence models for closure. The main objective of this work is to assess the widely used Spalart–Allmaras model suitability for high-speed compressor flows. For this purpose, an extensive investigation of the sources of uncertainties in a high-speed multi-stage compressor rig was carried out. The grid resolution near the casing end wall, which affects the tip leakage flow and casing boundary layer, was found to have a major effect on the stability limit prediction. Refinements in this region led to a stall margin loss prediction. It was found that this loss was exclusively due to the destruction term in the SA model.

References

1.
Choi
,
M.
,
Smith
,
N. H.
, and
Vahdati
,
M.
,
2012
, “
Validation of Numerical Simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
), p.
021004
. 10.1115/1.4006641
2.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor-part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
. 10.1115/1.4028558
3.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibition
,
Reno, NV
,
Jan. 6–9
, Vol.
1
, pp.
1
21
. https://doi.org/10.2514/6.1992-439
4.
Lee
,
K. B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan-Part I: Modification of Spalart-Allmaras Turbulence Model
,”
ASME J. Turbomach.
,
140
(
5
), p.
051008
. 10.1115/1.4039051
5.
Lee
,
K. B.
,
Dodds
,
J.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan-Part II: Unsteady Analysis
,”
ASME J. Turbomach.
,
140
(
5
), p.
051009
. 10.1115/1.4039052
6.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart-Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett., Sec. A: Gen., Atom. Solid State Phys.
,
375
(
24
), pp.
2377
2381
.
7.
Ma
,
L.
,
Lu
,
L.
,
Fang
,
J.
, and
Wang
,
Q.
,
2014
, “
A Study on Turbulence Transportation and Modification of Spalart-Allmaras Model for Shock-Wave/Turbulent Boundary Layer Interaction Flow
,”
Chinese J. Aeronaut.
,
27
(
2
), pp.
200
209
. 10.1016/j.cja.2014.02.008
8.
Day
,
I. J.
, and
Cumpsty
,
N. A.
,
1978
, “
Measurement and Interpretation of Flow Within Rotating Stall Cells in Axial Compressors.
,”
J. Mech. Eng. Sci.
,
20
(
2
), pp.
101
114
. 10.1243/JMES_JOUR_1978_020_017_02
9.
Camp
,
T. R.
, and
Day
,
J.
,
1997
, “
A Study of Spike and Modal Stall Phenomena in a Low-speed Axial Compressor
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
, Vol.
1
,
ASME
, p.
V001T03A109
.
10.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
. 10.1115/1.1861912
11.
Vahdati
,
M.
, and
Cumpsty
,
N.
,
2016
, “
Aeroelastic Instability in Transonic Fans
,”
ASME J. Eng. Gas. Turbines. Power.
,
138
(
2
), p.
022604
. 10.1115/1.4031225
12.
Sayma
,
A. I.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2000
, “
An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction. Part I: Formulation
,”
J. Fluids Struct.
,
14
(
1
), pp.
87
101
. 10.1006/jfls.1999.0253
13.
Kim
,
S.
,
Pullan
,
G.
,
Hall
,
C. A.
,
Grewe
,
R. P.
,
Wilson
,
M. J.
, and
Gunn
,
E.
,
2019
, “
Stall Inception in Low-Pressure Ratio Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071005
. 10.1115/1.4042731
14.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
. 10.1115/1.4028494
15.
Vo
,
H.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
. 10.1115/1.2750674
16.
Cevik
,
M.
,
Vo
,
H. D.
, and
Yu
,
H.
,
2016
, “
Casing Treatment for Desensitization of Compressor Performance and Stability to Tip Clearance
,”
ASME J. Turbomach.
,
138
(
12
), p.
121008
. 10.1115/1.4033420
17.
Nan
,
X.
,
Lin
,
F.
,
Wang
,
S.
,
Liu
,
L.
,
Ma
,
N.
, and
Chen
,
J.
,
2014
, “
The Analysis of Axial Momentum of the Rotor Tip Flows for Axial Compressors With Circumferential Grooves
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, Vol.
2A
,
ASME
.
18.
Nan
,
X.
,
Lin
,
F.
,
Himeno
,
T.
, and
Watanabe
,
T.
,
2018
, “
The Behavior of the Casing Boundary Layer with the Presence of Tip Leakage Vortex
,”
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
, Vol.
2A-2018
,
ASME
.
19.
Van Zante
,
D. E.
,
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Okiishi
,
T. H.
,
2000
, “
Recommendations for Achieving Accurate Numerical Simulation of Tip Clearance Flows in Transonic Compressor Rotors
,”
ASME J. Turbomach.
,
122
, pp.
733
742
.
20.
Chen
,
G. T.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Marble
,
F. E.
,
1991
, “
Similarity Analysis of Compressor Tip Clearance Flow Structure
,”
ASME J. Turbomach.
,
113
(
2
), pp.
260
269
. 10.1115/1.2929098
You do not currently have access to this content.