Abstract

This paper describes a multidisciplinary design optimization for performance improvement of an electric-ducted fan rotor using free-form deformation (FFD) and data mining techniques. A practical partitioning approach for FFD parameterization was applied in combination with engineering design parameters to optimize the fan rotor. Regression analysis was used to initially determine an approximation function for the blade static stress and subsequently integrated into a fully coupled iterative loop to optimize the blade considering two operating points. Two optimization solutions for 10 and 12 blades were performed. Percentage improvements in the efficiency of 1.05% and 1.32% were realized for 10 and 12 blades, respectively, at near peak efficiency flowrate. Also, blade static stress was reduced by percentages of 5.49% and 12.37% for 10 and 12 blades compared with the baseline. Data mining results revealed key design variable sensitivities where blade twist, sweep, chord, and hub thickness distribution were found to be the most influential for 12 blades while for 10 blades, blade lean, sweep and chord at the midspan and tip. The optimized blades were found to have a significant increase in chord from midspan to tip mimicking a wide chord fan blade particularly for 10 blades. Analysis of the flow field revealed that the axial velocity from 0.4 to 0.8 spanwise length increased significantly for the optimum blades due to the increase in blade twist and chord length at all stable operating points. However, the leakage trajectory relative to the blade chord was observed to be larger and interacted with the trailing edge wake flow downstream for the optimum blades at near-stall conditions. Furthermore, the increase in chord length and the thinning of the blade close to the trailing edge from 0.4 to 0.8 span reduced the suction-side blade loading and static stress.

References

1.
Castillo-Garcia
,
P.
,
Hernandez
,
L. E. M.
, and
Gil
,
P. G.
,
2016
,
Indoor Navigation Strategies for Aerial Autonomous Systems
,
Butterworth-Heinemann
,
Cambridge, MA
.
2.
Hu
,
Y.
, and
Liu
,
K.
,
2017
,
Inspection and Monitoring Technologies of Transmission Lines with Remote Sensing
,
Academic Press
,
Cambridge, MA
.
3.
Kim
,
H. D.
,
Perry
,
A. T.
, and
Ansell
,
P. J.
,
2018
, “
A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology
,”
AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)
,
IEEE
, pp.
1
21
.
4.
Tang
,
X.
,
Luo
,
J.
, and
Liu
,
F.
,
2017
, “
Aerodynamic Shape Optimization of a Transonic Fan by an Adjoint-Response Surface Method
,”
Aerosp. Sci. Technol.
,
68
, pp.
26
36
. 10.1016/j.ast.2017.05.005
5.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
. 10.2514/1.J051895
6.
Kodiyalam
,
S.
, and
Sobieszczanski-Sobieski
,
J.
,
2001
, “
Multidisciplinary Design Optimization-Some Formal Methods, Framework Requirements, and Application to Vehicle Design
,”
Int. J. Veh. Des.
,
25
(
1–2
), pp.
3
22
. 10.1504/IJVD.2001.001904
7.
Obayashi
,
S.
,
Jeong
,
S. K.
,
Shimoyama
,
K.
,
Chiba
,
K.
, and
Morino
,
H.
,
2010
, “
Multi-objective Design Exploration and Its Applications
,”
Int. J. Aeronaut. Space Sci.
,
11
(
4
), pp.
247
265
. 10.5139/IJASS.2010.11.4.247
8.
Lian
,
Y.
,
Oyama
,
A.
, and
Liou
,
M. S.
,
2010
, “
Progress in Design Optimization Using Evolutionary Algorithms for Aerodynamic Problems
,”
Prog. Aerosp. Sci.
,
46
(
5–6
), pp.
199
223
. 10.1016/j.paerosci.2009.08.003
9.
Jeong
,
S.
, and
Shimoyama
,
K.
,
2011
, “
Review of Data Mining for Multi-disciplinary Design Optimization
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
225
(
5
), pp.
469
479
. 10.1177/09544100JAERO906
10.
Li
,
Z.
, and
Zheng
,
X.
,
2017
, “
Review of Design Optimization Methods for Turbomachinery Aerodynamics
,”
Prog. Aerosp. Sci.
,
93
, pp.
1
23
. 10.1016/j.paerosci.2017.05.003
11.
Li
,
Y.
,
Ouyang
,
H.
, and
Du
,
Z. H.
,
2007
, “
Optimization Design and Experimental Study of Low-Pressure Axial Fan With Forward-Skewed Blades
,”
Int. J. Rotating Mach.
, Article ID 085275, p.
10
. 10.1155/2007/85275
12.
Goel
,
T.
,
Haftka
,
R. T.
,
Shyy
,
W.
, and
Queipo
,
N. V.
,
2007
, “
Ensemble of Surrogates
,”
Struct. Multidiscipl. Optim
,
33
(
3
), pp.
199
216
. 10.1007/s00158-006-0051-9
13.
Kim
,
J. H.
,
Ovgor
,
B.
,
Cha
,
K. H.
,
Kim
,
J. H.
,
Lee
,
S.
, and
Kim
,
K. Y.
,
2014
, “
Optimization of the Aerodynamic and Aeroacoustic Performance of an Axial-Flow Fan
,”
AIAA J.
,
52
(
9
), pp.
2032
2044
. 10.2514/1.J052754
14.
Joly
,
M. M.
,
Verstraete
,
T.
, and
Paniagua
,
G.
,
2014
, “
Multidisciplinary Design Optimization of a Compact Highly Loaded Fan
,”
Struct. Multidiscipl. Optim
,
49
(
3
), pp.
471
483
. 10.1007/s00158-013-0987-5
15.
Samareh
,
J. A.
,
1990
, “
A Survey of Shape Parameterization Techniques
,”
CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics, NASA/CP-1999-209136
.
16.
Samareh
,
J. A.
,
1999
,
A Novel Shape Parameterization Approach
,
NASA Contract No. TM-1999-209116
,
NASA Langley Research Center
,
Hampton, VA 23681-2199
.
17.
John
,
A.
,
Shahpar
,
S.
, and
Qin
,
N.
,
2017
, “
Novel Compressor Blade Shaping Through a Free-Form Method
,”
ASME. J. Turbomach.
,
139
(
8
), p.
081002
. 10.1115/1.4035833
18.
Li
,
L.
,
Jiao
,
J.
,
Sun
,
S.
,
Zhao
,
Z.
, and
Kang
,
J.
,
2019
, “
Aerodynamic Shape Optimization of a Single Turbine Stage Based on Parameterized Free-Form Deformation With Mapping Design Parameters
,”
Energy
,
169
, pp.
444
455
. 10.1016/j.energy.2018.12.031
19.
ANSYS Inc.
,
2009
,
ANSYS CFX-Solver Theory Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
20.
Bhashyam
,
G. R.
,
2002
,
ANSYS Mechanical—A Powerful Nonlinear Simulation Tool
, Vol.
1
,
ANSYS Inc.
,
Canonsburg, PA
, p.
39
.
21.
Ameri
,
A. A.
,
2010
,
NASA Rotor 37 CFD Code Validation
,
The Ohio State University
,
Columbus, OH
.
22.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul. Power
,
20
(
3
), pp.
559
565
. 10.2514/1.2703
23.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-Form Deformation of Solid Geometric Models
,”
ACM SIGGRAPH Comput. Graph.
,
20
(
4
), pp.
151
160
. 10.1145/15886.15903
24.
Feng
,
J.
,
Nishita
,
T.
,
Jin
,
X.
, and
Peng
,
Q.
,
2002
, “
B-spline Free-Form Deformation of Polygonal Object as Trimmed Bezier Surfaces
,”
Visual Comp.
,
18
(
8
), pp.
493
510
. 10.1007/s00371-002-0171-1
25.
Sieger
,
D.
,
Menzel
,
S.
, and
Botsch
,
M.
,
2012
, “
A Comprehensive Comparison of Shape Deformation Methods in Evolutionary Design Optimization
,”
Proceedings of the 3rd International Conference on Engineering Optimization
,
Rio de Janeiro, Brazil
,
July 1–5
.
26.
FRIENDSHIP SYSTEMS AG
, “
Product Overview
,” https://www.caeses.com/products/caeses/overview/, Accessed April 5, 2019.
27.
Benini
,
E.
, and
Biollo
,
R.
,
2007
, “
Aerodynamics of Swept and Leaned Transonic Compressor-Rotors
,”
Appl. Energy
,
84
(
10
), pp.
1012
1027
. 10.1016/j.apenergy.2007.03.003
28.
Ilikan
,
A. N.
, and
Ayder
,
E.
,
2015
, “
Influence of the Sweep Stacking on the Performance of an Axial Fan
,”
ASME J.Turbomach.
,
137
(
6
), p.
061004
. 10.1115/1.4028767
29.
Kim
,
J. H.
,
Kim
,
J. W.
, and
Kim
,
K. Y.
,
2011
, “
Axial-Flow Ventilation Fan Design Through Multi-objective Optimization to Enhance Aerodynamic Performance
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101101
. 10.1115/1.4004906
30.
Adams
,
B. M.
,
Bauman
,
L. E.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Ebeida
,
M. S.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Hough
,
P. D.
,
Hu
,
K. T.
,
Jakeman
,
J. D.
,
Swiler
,
L. P.
, and
Vigil
,
D. M.
,
2010
, “
DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.4 User's Manual
,” Sandia Technical Report SAND2010-2183,
Sandia National Laboratories
,
Livermore, CA
.
31.
Hameed
,
A. A.
,
Karlik
,
B.
,
Salman
,
M. S.
, and
Eleyan
,
G.
,
2019
, “
Robust Adaptive Learning Approach to Self-organizing Maps
,”
Knowl-Based Syst.
, 10.1016/j.knosys.2019.01.011.
32.
Lemke
,
F.
, and
Müller
,
J. A.
,
2003
, “
Self-organising Data Mining
,”
Syst. Anal. Model Simulat.
,
43
(
2
), pp.
231
240
. 10.1080/0232929031000136135
33.
Buendia-Ramon
,
V.
,
Soria-Olivas
,
E.
, and
Martin-Guerrero
,
J. D.
,
2015
,
Living for SOM
,
Universitat de Valencia
,
Spain
, http://www.livingforsom.com/, Accessed on January 29, 2019.
34.
Jang
,
C. M.
,
Sato
,
D.
, and
Fukano
,
T.
,
2005
, “
Experimental Analysis on Tip Leakage and Wake Flow in an Axial Flow Fan According to Flow Rates
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
322
329
. 10.1115/1.1881695
35.
To
,
H.
, and
Miller
,
R. J.
,
2019
, “
The Effect of Aspect Ratio on Compressor Performance
,”
ASME. J. Turbomach.
,
141
(
8
), p.
081011
. 10.1115/1.4043219
36.
Schmidt
,
T.
,
Peters
,
M.
,
Jeschke
,
P.
,
Matzgeller
,
R.
, and
Hiller
,
S. J.
,
2017
, “
High Aspect Ratio Blading in an Axial Compressor Stage
,”
ASME
Paper No. GT2017-63590, V02AT39A015
. p.
14
. 10.1115/GT2017-63590.
37.
Britsch
,
W. R.
,
1979
,
Effects of Diffusion Factor, Aspect Ratio and Solidity on Overall Performance of 14 Compressor Middle Stages
,
NASA Lewis Research Center
,
Cleveland, OH
.
38.
Yoon
,
Y. S.
,
Song
,
S. J.
, and
Shin
,
H. W.
,
2006
, “
Influence of Flow Coefficient, Stagger Angle, and Tip Clearance on Tip Vortex in Axial Compressors
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1274
1280
. 10.1115/1.2354522
39.
Khalid
,
S. A.
,
Khalsa
,
A. S.
,
Waitz
,
I. A.
,
Tan
,
C. S.
,
Greitzer
,
E. M.
,
Cumpsty
,
N. A.
,
Adamczyk
,
J. J.
, and
Marble
,
F. E.
,
1999
, “
Endwall Blockage in Axial Compressors
,”
ASME J.Turbomach.
,
121
(
3
), pp.
499
509
. 10.1115/1.2841344
40.
Adamczyk
,
J. J.
,
Celestina
,
M. L.
, and
Greitzer
,
E. M.
,
1993
, “
The Role of Tip Clearance in High-Speed Fan Stall
,”
ASME J.Turbomach.
,
115
(
1
), pp.
28
38
. 10.1115/1.2929212
41.
Gerolymos
,
G. A.
, and
Vallet
,
I.
,
1999
, “
Tip-Clearance and Secondary Flows in a Transonic Compressor Rotor
,”
ASME J.Turbomach.
,
121
(
4
), pp.
751
776
. 10.1115/1.2836729
42.
Johnston
,
I. H.
,
Dransfield
,
D. C.
, and
Fullbrook
,
D. J.
,
1967
, “
Experiments Concerning the Effect of Trailing-Edge Thickness on Blade Loss and Turbine Stage Efficiency
.”
Aeronautical Research Council Reports and Memoranda
,
R. & M. No. 3459
,
London, UK
.
43.
Prust
,
H. W.
,
1972
, “
Trailing Edge Geometry and Thickness on the Performance of Certain Turbine Stator Blading
,”
NASA Lewis Research Center
,
Cleveland, OH
.
You do not currently have access to this content.