Abstract

The dependence of the aerodynamic stability of fan blades with the nodal diameter and amplitude of the inlet perturbations is studied. The analysis is conducted using a block-wise spatial Fourier decomposition of reduced passages to reconstruct the full-annulus solution. The method represents very efficiently the unsteady flow generated by inlet non-uniformities. The explicit spatial Fourier approximation is exploited to characterize the relevance of each nodal diameter of the inlet perturbation in the fan stall process and study the nonlinear stability in a harmonic by harmonic basis. This approximation allows studying the contribution to stall of each circumferential mode separately. The methodology has been assessed for the NASA rotor 67. The maximum amplitude of total pressure distortion at which the compressor becomes unstable and triggers a stall process has been mapped. It has been proven that despite the complexity of a screen-induced total pressure distortion the only relevant parameter for the nonlinear stability of the fan is the most unstable nodal diameter. The equivalence in terms of stability between realistic distortion screens and single harmonic distortions has been assessed. Full-annulus simulations have been conducted to assess the accuracy of the simplified nonlinear stability limit. It is concluded that performing a nonlinear simulation with the proper single harmonic perturbation is enough to assess fan stability. The total pressure error with respect the full annulus simulation including a screen-induced pressure deficit at the intake is below 10%. It is shown that for the NASA rotor 67 running at the nominal speed, the most unstable nodal diameter is the first. This study not only shows a reduction in computational time to assess nonlinear fan stability by a factor of 7 but also creates an efficient methodology for understanding the nonlinear instability of fans due to inlet distortion profiles.

References

1.
Cousins
,
W. T.
,
2004
, “
History, Philosophy, Physics, and Future Directions of Aircraft Propulsion System/Inlet Integration
,”
ASME Turbo Expo 2004: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
, pp.
305
320
.
2.
Burstadt
,
P. L.
,
Calogeras
,
J.
, and
Mehalic
,
C.
,
1971
, “Experimental Investigation of the Effect of Screen Induced Total Pressure Distortion on Turbojet Stall Margin,”
Technical Memorandum NASA TM X-2239
,
NASA Lewis Research Center
,
Cleveland, OH
.
3.
Rademakers
,
R.
,
Bindl
,
S.
, and
Niehuis
,
R.
,
2016
, “
Effects of Flow Distortions As They Occur in S-duct Inlets on the Performance and Stability of a Jet Engine
,”
ASME J. Eng. Gas. Turbines. Power.
,
138
(
2
), p.
022605
. 10.1115/1.4031305
4.
Page
,
J. H.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2018
, “
Effect of Inlet Distortion Features on Transonic Fan Rotor Stall
,”
ASME J. Turbomach.
,
140
(
7
), p.
071008
. 10.1115/1.4040030
5.
Frohnapfel
,
D. J.
, and
O’Brien
,
W. F.
,
2015
, “
Fan Response to Inlet Swirl Distortions Produced by Boundary Layer Ingesting Aircraft Configurations
,”
51st AIAA/SAE/ASEE Joint Propulsion Conference
,
Orlando, FL
,
July 27–29
.
6.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
), p.
071012
. 10.1115/1.4035631
7.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2019
, “
Effects of Inlet Disturbances on Fan Stability
,”
ASME J. Eng. Gas. Turbines. Power.
,
141
(
5
), p.
051014
. 10.1115/1.4042204
8.
Zhang
,
W.
, and
Vahdati
,
M.
,
2018
, “
A Parametric Study of the Effects of Inlet Distortion on Fan Aerodynamic Stability
,”
ASME J. Turbomach.
,
141
(
1
), p.
11
. 10.1115/gt2018-76673
9.
Schneck
,
W.
,
Ferrar
,
A.
,
Bailey
,
J.
,
Hoopes
,
K.
, and
O’Brien
,
W.
,
2013
, “
Improved Prediction Method for the Design of High-Resolution Total Pressure Distortion Screens
,”
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
,
Grapevine, TX
,
Jan. 7–10
, p.
1133
.
10.
Hah
,
C.
,
Rabe
,
D. C.
,
Sullivan
,
T. J.
, and
Wadia
,
A. R.
,
1998
, “
Effects of Inlet Distortion on the Flow Field in a Transonic Compressor Rotor
,”
ASME J. Turbomach.
,
120
(
2
), pp.
233
246
. 10.1115/1.2841398
11.
Ferrar
,
A.
,
Schneck
,
W.
,
Bailey
,
J.
,
Hoopes
,
K.
, and
O’Brien
,
W.
,
2012
, “
Application of Additive Manufacturing to Rapidly Produce High-Resolution Total Pressure Distortion Screens
,”
50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
,
Jan. 9–12
, p.
929
.
12.
Zhang
,
W.
, and
Vahdati
,
M.
,
2017
, “
Influence of the Inlet Distortion on Fan Stall Margin At Different Rotational Speed
,”
GPPS Conference Paper
, Vol.
207
.
13.
Reid
,
C.
,
1969
, “
The Response of Axial Flow Compressors to Intake Flow Distortion
,”
ASME 1969 Gas Turbine Conference and Products Show
,
Cleveland, OH
,
Mar. 9–13
, American Society of Mechanical Engineers, p. V001T01A029.
14.
Biesiadny
,
T. J.
,
Braithwaite
,
W. M.
,
Soeder
,
R. H.
, and
Abdelwahab
,
M.
,
1986
, “
Summary of Investigations of Engine Response to Distorted Inlet Conditions
.” NASA Technical Memo No. 87317,
Lewis Research Center
,
Cleveland, OH
.
15.
Longley
,
J.
,
Shin
,
H.-W.
,
Plumley
,
R.
,
Silkowski
,
P.
,
Day
,
I.
,
Greitzer
,
E.
,
Tan
,
C.
, and
Wisler
,
D.
,
1996
, “
Effects of Rotating Inlet Distortion on Multistage Compressor Stability
,”
ASME J. Turbomach.
,
118
(
2
), pp.
181
188
. 10.1115/1.2836624
16.
Perovic
,
D.
,
Hall
,
C. A.
, and
Gunn
,
E.
,
2019
, “
Stall Inception in a Boundary Layer Ingesting Fan
,”
ASME J. Turbomach.
,
141
(
9
), p.
091007
. 10.1115/1.4043644
17.
Yao
,
J.
,
Gorrell
,
S. E.
, and
Wadia
,
A. R.
,
2010
, “
High-fidelity Numerical Analysis of Per-rev-type Inlet Distortion Transfer in Multistage Fans—Part I: Simulations with Selected Blade Rows
,”
ASME J. Turbomach.
,
132
(
4
), p.
041014
. 10.1115/1.3148478
18.
Yao
,
J.
,
Gorrell
,
S. E.
, and
Wadia
,
A. R.
,
2010
, “
High-fidelity Numerical Analysis of Per-rev-Type Inlet Distortion Transfer in Multistage Fans – Part Ii: Entire Component Simulation and Investigation
,”
ASME J. Turbomach.
,
132
(
4
), p.
041015
. 10.1115/1.3148479
19.
Sheoran
,
Y.
,
Bouldin
,
B.
, and
Krishnan
,
P. M.
,
2012
, “
Compressor Performance and Operability in Swirl Distortion
,”
ASME J. Turbomach.
,
134
(
4
), p.
041008
. 10.1115/1.4003657
20.
Choi
,
M.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2011
, “
Effects of Fan Speed on Rotating Stall Inception and Recovery
,”
ASME J. Turbomach.
,
133
(
4
), p.
041013
. 10.1115/1.4003243
21.
Choi
,
M.
,
Smith
,
N. H.
, and
Vahdati
,
M.
,
2013
, “
Validation of Numerical Simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
), p.
021004
. 10.1115/1.4006641
22.
Fidalgo
,
V. J.
,
Hall
,
C.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the Nasa Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
. 10.1115/1.4003850
23.
Lee
,
K.-B.
,
Dodds
,
J.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan-Part II: Unsteady Analysis
,”
ASME J. Turbomach.
,
140
(
5
), p.
051009
. 10.1115/1.4039052
24.
Hall
,
K. C.
, and
Lorence
,
C. B.
,
1993
, “
Calculation of Three-Dimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations
,”
ASME J. Turbomach.
,
115
(
4
), pp.
800
809
. 10.1115/1.2929318
25.
He
,
L.
,
2006
, “
Fourier Modeling of Steady and Unsteady Nonaxisymmetrical Flows
,”
J. Propul. Power.
,
22
(
1
), pp.
197
201
. 10.2514/1.15701
26.
He
,
L.
,
2011
, “
Efficient Computational Model for Nonaxisymmetric Flow and Heat Transfer in Rotating Cavity
,”
ASME J. Turbomach.
,
133
(
2
), p.
021018
. 10.1115/1.4000551
27.
He
,
L.
,
2011
, “
Block-spectral Approach to Film-Cooling Modeling
,”
ASME J. Turbomach.
,
134
(
2
), p.
021018
. 10.1115/1.4003073
28.
He
,
L.
,
2013
, “
Block-spectral Mapping for Multi-Scale Solution
,”
J. Comput. Phys.
,
250
(
C
), pp.
13
26
. 10.1016/j.jcp.2013.05.004
29.
He
,
L.
,
2013
, “
Fourier Spectral Modelling for Multi-Scale Aero-Thermal Analysis
,”
Int. J. Computat. Fluid Dyn.
,
27
(
2
), pp.
118
129
. 10.1080/10618562.2013.763935
30.
He
,
L.
,
2018
, “
Multiscale Block Spectral Solution for Unsteady Flows
,”
Int. J. Numer. Methods Fluids
,
86
(
10
), pp.
655
678
. 10.1002/fld.4472
31.
Burgos
,
M. A.
,
Contreras
,
J.
, and
Corral
,
R.
,
2011
, “
Efficient Edge-Based Rotor/stator Interaction Method
,”
AIAA J.
,
49
(
1
), pp.
19
31
. 10.2514/1.44512
32.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
, “
Efficient Execution of a Parallel Edged-Based Navier-Stokes Solver on Graphics Processing Units
,”
Int. J. Comp. Fluid Dyn.
,
31
(
2
), pp.
1
16
. 10.1080/10618562.2017.1294686
33.
Romera
,
D.
, and
Corral
,
R.
,
2020
, “
Efficient Passage-spectral Method for Unsteady Flows Under Stall Conditions
,”
ASME J. Turbomach.
,
142
(
12
), p.
121007
. 10.1115/1.4047934
34.
Peterson
,
M. W.
,
Gorrell
,
S. E.
, and
List
,
M. G.
,
2017
, “
Fourier Descriptors for Improved Analysis of Distortion Transfer and Generation
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
You do not currently have access to this content.