Abstract

The requirement for reduced emissions and the growing demand for gas turbine efficiency are in part met through increasing firing temperatures. However, development budgets leave only limited time for dedicated thermal testing. Consequently, manufacturers are seeking novel temperature measurement technologies to validate new engine designs. This paper will demonstrate how a new temperature mapping technology can be utilized for non-dedicated (multi-cycling) testing while still delivering high-resolution temperature data in a non-dedicated test on a combustor of an industrial gas turbine. Typically, thermocouples are used to monitor the temperature during tests, but they only provide one data point. Color-changing thermal paints are used to deliver measurements over complete surfaces, but they require dedicated testing with short-duration exposure, necessitating dismantling and re-assembling the engine for further testing. Thermal History Coatings (THC) present an alternative solution to providing high-density temperature information. This coating permanently changes consistent with the maximum temperature of exposure during the test. A laser-based instrumentation technique is then used to obtain temperatures. The maximum temperature profile of the surface can be determined through a customized calibration. Given the complex cooling system of a combustor, the high temperatures, and the long-time exposure, this case offers a unique possibility for the testing of the coating under real engine conditions. The coated region covered the external surface of the can. Highly significant is the number of measurement points above 7000 (2 × 2 mm resolution), which enables advanced analysis. This provides insight into the impact of local features, e.g., the region adjacent to a cooling hole. The temperature profile is compared to a computational fluid dynamics-conjugate heat transfer model and thermocouple measurements for the calibration of cooling pre-design methods.

References

1.
Krewinkel
,
R.
,
Orth
,
U.
,
Viereck
,
D.
, and
Wiers
,
S. H.
,
2017
, “
MAN Industrial Gas Turbines for Clean and Flexible Power—Solutions for International Power Generation Markets
,”
Proceedings of the IDGTE 9th International Gas Turbine Conference
,
St. Neots, UK
,
Sept. 22–23
, vol. 22, p.
625
.
2.
Reiss
,
F.
,
Wiers
,
S. H.
,
Orth
,
U.
,
Aschenbruck
,
E.
,
Lauer
,
M.
, and
El Masalme
,
J.
,
2014
, “
Combustion System Development and Testing for MAN’s New Industrial Gas Turbines MGT 6100 and MGT 6200
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
.
3.
Krewinkel
,
R.
,
Färber
,
J.
,
Lauer
,
M.
,
Frank
,
D.
,
Orth
,
U.
,
Gonzalez
,
A. Y.
,
Pilgrim
,
C.
, et al
,
2017
, “
Validation of Surface Temperature Measurements on a Combustor Liner Under Full-Load Conditions Using a Novel Thermal History Paint
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041508
.
4.
Kerr
,
C.
, and
Ivey
,
P.
,
2002
, “
An Overview of the Measurement Errors Associated With Gas Turbine Aeroengine Pyrometer Systems
,”
Meas. Sci. Technol.
,
13
(
6
), p.
307
.
5.
Magunov
,
A. N.
,
Pylnev
,
M. A.
, and
Lapshinov
,
B. A.
,
2014
, “
Spectral Pyrometry of Objects With Unknown Emissivities in a Temperature Range of 400–1200K
,”
Instruments Exp. Tech.
,
57
(
1
), pp.
86
90
.
6.
Feist
,
J. P.
,
Sollazzo
,
P. Y.
,
Berthier
,
S.
,
Charnley
,
B.
, and
Wells
,
J.
,
2012
, “
Application of an Industrial Sensor Coating System on a Rolls-Royce Jet Engine for Temperature Detection
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012101
.
7.
Jenkins
,
T. P.
,
Hess
,
C. F.
,
Allison
,
S. W.
, and
Eldridge
,
J. I.
,
2020
, “
Measurements of Turbine Blade Temperature in an Operating Aero Engine Using Thermographic Phosphors
,”
Meas. Sci. Technol.
,
31
(
4
), p.
44003
.
8.
Shaddix
,
C. R.
,
1999
, “
Correcting Thermocouple Measurements for Radiation Loss: A Critical Review
”. https://www.osti.gov/biblio/20002672-correcting-thermocouple-measurements-radiation-loss-critical-review
9.
Pearce
,
J. V.
,
Edler
,
F.
,
Elliott
,
C. J.
,
Rosso
,
L.
,
Sutton
,
G.
,
Andreu
,
A.
, and
Machin
,
G.
,
2017
, “
EMPRESS: A European Project to Enhance Process Control Through Improved Temperature Measurement
,”
Int. J. Thermophys.
,
38
(
8
), pp.
1
13
.
10.
Volinsky
,
A. A.
, and
Ginzbursky
,
L.
,
2003
, “
Irradiated Cubic Single Crystal SiC as a High Temperature Sensor
,”
Mat. Res. Soc. Symp. Proc.
,
792
, p.
R5.3
.
11.
Brown
,
J.
,
DeVoe
,
J.
, and
Ginzbursky
,
L.
,
2013
, “
The Challenges of Uniform Crystal Temperature Sensor (UCTS) Application in Turbomachinery
,”
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
.
12.
Lempereur
,
C.
,
Andral
,
R.
, and
Prudhomme
,
J. Y.
,
2008
, “
Surface Temperature Measurement on Engine Components by Means of Irreversible Thermal Coatings
,”
Meas. Sci. Technol.
,
19
(
10
), p.
105501
.
13.
Mackilligin
,
H.
,
Champness
,
N.
, and
Licence
,
P.
,
2020
, “
Thermochromic Paint
,” U.S. Patent No. 10,844,232.
14.
Bird
,
C.
,
Mutton
,
J. E.
,
Shepherd
,
R.
,
Smith
,
M.
, and
Watson
,
H. M. L.
,
1998
, “
Surface Temperature Measurements in Turbines
,”
AGARD Conference Proceedings
,
Brussels, Belgium
,
Oct. 20–24
, pp.
21
24
.
15.
Feist
,
J. P.
,
Karmakar Biswas
,
S.
,
Pilgrim
,
C. C.
,
Sollazzo
,
P. Y.
, and
Berthier
,
S.
,
2015
, “
Off-Line Temperature Profiling Utilizing Phosphorescent Thermal History Paints and Coatings
,”
ASME J. Turbomach.
,
137
(
10
), p.
101003
.
16.
Araguás-Rodríguez
,
S.
,
Ferran-Marqués
,
M.
,
Pilgrim
,
C. C.
,
Kamnis
,
S.
,
Feist
,
J. P.
, and
Nicholls
,
J. R.
,
2020
, “
Thermal History Coatings—Part I: Influence of Atmospheric Plasma Spray Parameters on Performance
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual Conference
,
Sept. 21–25
.
17.
Ferran-Marqués
,
M.
,
Araguás-Rodríguez
,
S.
,
Pilgrim
,
C. C.
,
Lee
,
K.
,
Larose
,
J.
,
Feist
,
J.
, and
Nicholls
,
J. R.
,
2020
, “
Thermal History Coatings—Part II: Measurement Capability up to 1500°C
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual Conference
,
Sept. 21–25
.
18.
Yañez-Gonzalez
,
A.
,
Ruiz-Trejo
,
E.
,
van Wachem
,
B.
, and
Heyes
,
A. L.
,
2016
, “
Development of an Optical Thermal History Coating Sensor Based on the Oxidation of a Divalent Rare Earth Ion Phosphor
,”
Meas. Sci. Technol.
,
27
(
11
), p.
115103
.
19.
Krewinkel
,
R.
,
Such
,
A.
,
de la Torre
,
A. O.
,
Wiedermann
,
A.
,
Castillo
,
D.
,
Araguas-Rodriguez
,
S.
,
Schleifenbaum
,
J. H.
, and
Blaswich
,
M.
,
2020
, “
Design and Characterization of Additively Manufactured NGVs Operated in a Small Industrial Gas Turbine
,”
Int. J. Gas Turbine Propuls. Power Syst.
,
11
(
4
), pp.
36
44
.
20.
Pilgrim
,
C. C.
,
Castillo
,
D.
,
Araguás-Rodríguez
,
S.
,
Karagiannopoulos
,
S.
,
Feist
,
J. P.
,
Redwood
,
A.
,
Zhang
,
Y.
,
Copeland
,
C.
,
Scobie
,
J.
, and
Sangan
,
C.
,
2020
, “
Thermal Profiling of Cooled Radial Turbine Wheel
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual Conference
,
Sept. 21–24
.
21.
Araguás-Rodríguez
,
S.
,
Jelínek
,
T.
,
Michálek
,
J.
,
Yáñez-González
,
Á.
,
Schulte
,
F.
,
Pilgrim
,
C.
,
Feist
,
J.
, and
Skinner
,
S.
,
2017
, “
Accelerated Thermal Profiling of Gas Turbine Components Using Luminescent Thermal History Paints
,”
J. Glob. Power Propuls. Soc.
,
2
, pp.
344
361
.
22.
Araguás-Rodríguez
,
S.
,
Yañez-Gonzalez
,
A.
,
Pilgrim
,
C.
,
Berthier
,
S.
,
Biswas
,
S.
,
Feist
,
J.
,
Skinner
,
S.
, and
Heyes
,
A.
,
2015
, “
Luminescent Thermal History Sensors: Fundamentals and Applications for Thermal Profiling
,”
Proceedings of the Conference: Symposium on Test Cell and Controls Instrumentation and EHM Technologies for Military Air, Land and Sea Turbine Engines
,
Rzeszow, Poland
,
April
, p.
15
.
23.
Pilgrim
,
C. C.
,
Ehrhard
,
J.
,
Schinnerl
,
M.
,
Araguás-Rodríguez
,
S.
,
Peral
,
D.
,
Straka
,
M. S.
,
Genschmar
,
M.
,
Karagiannopoulos
,
S.
,
Pacheco-Gutierrez
,
S.
, and
Feist
,
J. P.
,
2020
, “
Thermal Profiling of Automotive Turbochargers in Durability Tests
,”
Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual conference
,
Sept. 21–25
.
24.
ANSYS-Europe
,
2010
, “
CFX User Document, Version 13.0
,” https://www.ansys.com/en-gb/products/fluids/ansys-cfx.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
Baughn
,
J. W.
,
Hoffman
,
M. A.
,
Takahashi
,
R. K.
, and
Launder
,
B. E.
,
1984
, “
Local Heat Transfer Downstream of an Abrupt Expansion in a Circular Channel With Constant Wall Heat Flux
,”
ASME J. Heat Transfer-Trans. ASME
,
106
(
4
), pp.
789
796
.
27.
Peral
,
D.
,
Castillo
,
D.
,
Araguas-Rodriguez
,
S.
,
Yañez-Gonzalez
,
A.
,
Pilgrim
,
C. C.
,
Karagiannopoulos
,
S.
,
Feist
,
J. P.
, and
Skinner
,
S.
,
2019
, “
Reliable Temperature Measurement with Thermal History Paints: An Uncertainty Model
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
You do not currently have access to this content.