Abstract

The present work analyzes the three-dimensional unsteady flow structure of a low-speed low-pressure ratio axial fan stage operating at stall conditions. Unsteady numerical simulations were conducted with the elsA software, which solves the unsteady Reynolds-averaged Navier–Stokes (URANS) equations on a full-annulus calculation domain for the rotor and the stator. The analyses will focus on a near stall operating point, the stall inception mechanisms, and the final rotating stall pattern. Numerical simulations are confronted with experimental measurements from high-frequency Kulite transducers mounted on the casing near the rotor blades and the stator blades. The results show that boundary layer separation occurs on the stator blade close to the hub region at near stall conditions. The reverse flow interacts with the main flow to form a vortex shedding phenomenon. The frequency is not clocked with the blade passage frequency, requiring unsteady full-annulus methodology even for a stable operating point. It is also shown that the final state of the rotating stall region is composed of a single part-span cell that occupies three-quarters of the circumference and rotates at 60% of the shaft speed. This pattern agrees with the experimental measurements in terms of both the number of cells and the rotational speed. Finally, the paper demonstrates that without inlet distortion, the mechanism of the onset of the rotating stall is incorrectly predicted by the simulation. However, when a total pressure inlet distortion is applied, the computational fluid dynamics produces the same inception mechanism that is observed experimentally.

References

1.
Greitzer
,
E. M.
,
1981
, “
The Stability of Pumping Systems—The 1980 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
193
242
.
2.
Day
,
I. J.
,
1993
, “
Active Suppression of Rotating Stall and Surge in Axial Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
40
47
.
3.
McDougall
,
N. M.
,
Cumpsty
,
N. M.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
125
.
4.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressor
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
5.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.
6.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
7.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2012
, “
Origins and Structure of Spike-Type Rotating Stall
,”
Proceeding of ASME Turbo Expo
, Paper No. GT2012-68707, pp.
2567
2579
.
8.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
77
(
4
), pp.
455
469
.
9.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
463
.
10.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
375
.
11.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
12.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part I: Experimental Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051002
.
13.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.
14.
Ortolan
,
A.
,
2017
, “
Etude Aérodynamique de Ventilateurs Axiaux Réversibles à Performance duale Compresseur/turbine élevée
,” Ph.D. thesis,
Toulouse, ISAE
.
15.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
, p.
439
.
16.
Cambier
,
L.
, and
Gazaix
,
M.
,
2002
, “
elsA: An Efficient Object-Oriented Solution to CFD Complexity
,”
Proceedings of the 40th Aerospace Science Meeting and Exhibit
,
Reno, NV
,
January
.
17.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Airfoils and Wings
,”
10th AIAA Computational Fluid Dynamics Conference
, Paper No. 91-1596,
Reno, NV
.
18.
Yoon
,
S.
, and
Jameson
,
A.
,
2002
, “
An LU-SSOR Scheme for the Euler and Navier–Stokes Equation
,”
AIAA 25th Aerospace Science Meeting
, Paper No. 87-0600,
Reno, NV
.
19.
Filola
,
G.
,
Le Pape
,
M. C.
, and
Montagnac
,
M.
,
2004
, “
Numerical Simulations Around Wing Control Surfaces
,”
24th ICAS Meeting
,
Yokohama, Japan.
20.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program
, pp.
193
208
.
21.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
Soc. Automot. Eng. Trans.
,
70
, pp.
309
332
.
22.
Kim
,
S.
,
Pullan
,
G.
,
Hall
,
C. A.
,
Grewe
,
R. P.
,
Wilson
,
M. J.
, and
Gunn
,
E.
,
2018
, “
Stall Inception in Low Pressure Ratio Fans
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
50992
,
American Society of Mechanical Engineers
, Paper No. V02AT39A005.
You do not currently have access to this content.