Abstract

A zero inlet swirl turbine rotor (ZISTR) works with axial inlet gas flow directly exhausted from a combustion chamber without any upstream vanes. The suction side trailing edge shock of the ZISTR generates a significant amount of aerodynamic loss. A shock loss reduction method is presented for the ZISTR. The principle of the method is to replace the single shock by double shocks. For minimizing the shock loss, the strength of the double shocks is set to be equal. This is based on a design criterion that multiple shocks should be with equal strength to achieve the minimum shock loss. This design criterion has been widely used for supersonic inlet design, but it is first extended to the transonic turbine design in the present article. A shock model, using aerodynamic relations of oblique shock, is put forward to quantitatively determine the shape of the concave suction-side profile. Numerical simulations indicate that the concave suction-side profile induces a new shock upstream of the suction-side trailing edge shock, and these two shocks are with nearly equal strength in the improved ZISTR. The shock loss of the improved ZISTR is obviously reduced. The concave tip profile would redistribute the blade load on the tip and increase the tip leakage flow loss. Hence, it is suggested that the concave profiles should be designed between 0% and 80% blade span, and the tip profile should keep unchanged. The improved ZISTR with an unchanged tip profile achieves an improvement of turbine efficiency by 0.8% at the design condition.

References

1.
Zhao
,
W.
,
Wu
,
B.
, and
Xu
,
J.
,
2015
, “
Aerodynamic Design and Analysis of a Multistage Vaneless Counter-Rotating Turbine
,”
ASME. J. Turbomach.
,
137
(
6
), p.
061008
.
2.
Zhao
,
W.
,
Zhao
,
Q.
, and
Sui
,
X.
,
2017
, “
Numerical Investigation on Loss Mechanism and Performance Improvement for a Zero Inlet Swirl Turbine Rotor
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
,
ASME Paper No. GT2017-63220
.
3.
Sriram
,
R.
, and
Jagadeesh
,
G.
,
2014
, “
Shock Tunnel Experiments on Control of Shock Induced Large Separation Bubble Using Boundary Layer Bleed
,”
Aerosp. Sci. Technol.
,
36
, pp.
87
93
.
4.
Saracoglu
,
B. H.
,
Paniagua
,
G.
,
Salvadori
,
S.
,
Tomasoni
,
F.
,
Duni
,
S.
,
Yasa
,
T.
, and
Miranda
,
A.
,
2012
, “
Trailing Edge Shock Modulation by Pulsating Coolant Ejection
,”
Appl. Therm. Eng.
,
48
, pp.
1
10
.
5.
Rybalko
,
M.
,
Babinsky
,
H.
, and
Loth
,
E.
,
2012
, “
Vortex Generators for a Normal Shock/Boundary-Layer Interaction With a Downstream Diffuser
,”
J. Propuls. Power
,
28
(
1
), pp.
71
82
.
6.
Zhao
,
B.
,
Qi
,
M.
,
Sun
,
H.
,
Shi
,
X.
, and
Ma
,
C.
,
2019
, “
Experimental and Numerical Investigation on the Shock Wave Structure Alterations and Available Energy Loss Variations With a Grooved Nozzle Vane
,”
ASME. J. Turbomach.
,
141
(
5
), p.
051001
.
7.
John
,
A.
,
Qin
,
N.
, and
Shahpar
,
S.
,
2019
, “
Using Shock Control Bumps to Improve Transonic Fan/Compressor Blade Performance
,”
ASME. J. Turbomach.
,
141
(
8
), p.
081003
.
8.
Zhao
,
W.
,
Luo
,
W.
,
Zhao
,
Q.
, and
Xu
,
J.
,
2016
, “
Investigation on the Reduction of Trailing Edge Shock Losses for a Highly Loaded Transonic Turbine
,”
Proceedings of ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
,
ASME Paper No. GT2016-56131
.
9.
Oswatitsch
,
K.
,
1980
,
Contributions to the Development of Gasdynamics
,
Vieweg
,
Braunschweig
. pp.
290
323
.
10.
Ran
,
H.
, and
Mavris
,
D.
,
2005
, “
Preliminary Design of a 2D Supersonic Inlet to Maximize Total Pressure Recovery
,”
AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences
,
Arlington, VA
,
Sept. 26–28
, p. 7357.
11.
Smart
,
M. K.
,
1999
, “
Optimization of Two Dimensional Scramjet Inlets
,”
J. Aircr.
,
36
(
2
), pp.
430
433
.
12.
Raj
,
N.
, and
Venkatasubbaiah
,
K.
,
2012
, “
A New Approach for the Design of Hypersonic Scramjet Inlets
,”
Phys. Fluids
,
24
(
8
), pp.
729
745
.
13.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
,
Cohen
,
H.
,
Straznicky
,
P. V.
, and
Nix
,
A. C.
,
2017
,
Gas Turbine Theory
, 7th ed.,
Pearson
,
London, UK
, pp.
320
334
.
14.
Wu
,
W.
,
Zhu
,
R.
, and
Liu
,
C.
,
1979
, “
Computer Programs of Flow Calculation on Relative Stream Surfaces S1 and S2 Employing Non-Orthogonal Curvilinear Coordinates and Non-Orthogonal Velocity Components and Their Application to the Design of Turbomachine Blades Based on Three-Dimensional Flow
,”
4th International Symposium on Air Breathing Engines
,
Orlando, FL
,
Apr. 1–6
, pp.
277
287
.
15.
Ronald
,
H.
, and
Aungier
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis
,
ASME Press
,
New York
, pp.
168
179
.
16.
Zess
,
G. A.
, and
Thole
,
K. A.
,
2002
, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,”
ASME. J. Turbomach.
,
124
(
2
), pp.
167
175
.
17.
Saha
,
R.
,
Fridh
,
J.
,
Fransson
,
T.
,
Mamaev
,
B. I.
, and
Annerfeldt
,
M.
,
2012
, “
Experimental Studies of Leading Edge Contouring Influence on Secondary Losses in Transonic Turbines
,”
Proceedings of ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
,
ASME Paper No. GT2012-68497
.
18.
Ananthakrishnan
,
K.
, and
Govardhan
,
M.
,
2018
, “
Influence of Fillet Shapes on Secondary Flow Field in a Transonic Axial Flow Turbine Stage
,”
Aerosp. Sci. Technol.
,
82
, pp.
425
437
.
19.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
20.
Edwards
,
R.
,
Asghar
,
A.
,
Woodason
,
R.
,
LaViolette
,
M.
,
Boulama
,
K. G.
, and
Allan
,
W. D. E.
,
2011
, “
Numerical Investigation of the Influence of Real World Blade Profile Variations on the Aerodynamic Performance of Transonic Nozzle Guide Vanes
,”
ASME. J. Turbomach.
,
134
(
2
), p.
021014
.
21.
Jennions
,
I. K.
, and
Adamczyk
,
J. J.
,
1997
, “
Evaluation of the Interaction Losses in a Transonic Turbine HP Rotor/LP Vane Configuration
,”
ASME. J. Turbomach.
,
119
(
1
), pp.
68
76
.
22.
Greizer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow: Concepts and Applications
,
Cambridge University Press
,
New York
, pp.
27
28
.
23.
Zlatinov
,
M. B.
,
Sooi Tan
,
C.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME. J. Turbomach.
,
134
(
6
), p.
061027
.
24.
Zhang
,
L.
,
Zheng
,
Z.
,
Zhang
,
Q.
, and
Wang
,
S.
,
2019
, “
Simulation of Entropy Generation During the Evolution of Rotating Stall in a Two-Stage Variable-Pitch Axial fan
,”
Adv. Mech. Eng.
,
11
(
5
), pp.
1
12
.
25.
Anderson
,
J. D.
,
2011
,
Fundamentals of Aerodynamics
, 5th ed.,
McGraw-Hill
,
New York
, pp.
611
618
.
26.
Tiainen
,
J.
,
Jaatinen-Värri
,
A.
,
Grönman
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2018
, “
Effect of FreeStream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors
,”
ASME. J. Turbomach.
,
140
(
5
), p.
051003
.
You do not currently have access to this content.