Abstract

This paper considers the impact of a damaged leading edge (LE) on the stall margin and stall inception mechanisms of a transonic, low-pressure ratio fan. The damage takes the form of a squared-off leading edge over the upper half of the blade. Full-annulus, unsteady CFD simulations are used to explain the stall inception mechanisms for the fan at low- and high-speed operating points. A combination of steady and unsteady simulations shows that the fan is predicted to be sensitive to leading edge damage at low-speed, but insensitive at high-speed. This blind prediction aligns well with rig test data. The difference in response is shown to be caused by the change between subsonic and supersonic flow regimes at the leading edge. Where the inlet relative flow is subsonic, rotating stall is initiated by the growth and propagation of a subsonic leading edge flow separation. This separation is shown to be triggered at higher mass flow rates when the leading edge is damaged, reducing the stable flow range. Where the inlet relative flow is supersonic, the flow undergoes a supersonic expansion around the leading edge, creating a supersonic flow patch terminated by a shock on the suction surface. Rotating stall is triggered by the growth of this separation, which is insensitive to the leading edge shape. This creates a considerable difference in sensitivity to damage at low- and high-speed operating points.

References

1.
Walraevens
,
R. E.
, and
Cumpsty
,
N. A.
,
1995
, “
Leading Edge Separation Bubbles on Turbomachine Blades
,”
ASME J. Turbomach.
,
117
(
1
), pp.
115
125
.
2.
Wheeler
,
A. P. S.
,
Sofia
,
A.
, and
Miller
,
R. J.
,
2009
, “
The Effect of Leading-Edge Geometry on Wake Interactions in Compressors
,”
ASME J. Turbomach.
,
131
(
4
), p.
041013
.
3.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2012
, “
The Impact of Real Geometries on Three-Dimensional Separations in Compressors
,”
ASME J. Turbomach.
,
134
(
2
), p.
021007
.
4.
Reid
,
L.
, and
Urasek
,
D. C.
,
1973
, “
Experimental Evaluation of the Effects of a Blunt Leading Edge on the Performance of a Transonic Rotor
,”
ASME J. Turbomach.
,
95
(
3
), pp.
199
204
.
5.
Hergt
,
A.
,
Klinner
,
J.
,
Steinert
,
W.
,
Grund
,
S.
,
Beversdorff
,
M.
,
Giebmanns
,
A.
, and
Schnell
,
R.
,
2015
, “
The Effect of an Eroded Leading Edge on the Aerodynamic Performance of a Transonic Fan Blade Cascade
,”
ASME J. Turbomach.
,
137
(
2
), p.
021006
.
6.
Sayma
,
A. I.
,
Kim
,
M.
, and
Smith
,
N. H. S.
,
2003
, “
Leading-Edge Shape and Aeroengine Fan Blade Performance
,”
J. Propul. Power
,
19
(
3
), pp.
517
520
.
7.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.
8.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
9.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S. D.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2019
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME J. Turbomach.
,
141
(
6
), p.
061010
.
10.
Kim
,
S.
,
Pullan
,
G.
,
Hall
,
C. A.
,
Grewe
,
R. P.
,
Wilson
,
M. J.
, and
Gunn
,
E.
,
2019
, “
Stall Inception in Low-Pressure Ratio Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071005
.
11.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier-Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.
12.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Recherche Aérospatiale
,
1
, pp.
5
21
.
13.
Liu
,
Y.
,
Yu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart-Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
14.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan—Part I: Modification of Spalart-Allmaras Turbulence Model
,”
ASME J. Turbomach.
,
140
(
5
), p.
051008
.
15.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flow Past Airfoils and Wings
,”
AIAA 10th Computational Fluid Dynamics Conference
, Paper No. AIAA 91-1596.
16.
Numeca International
,
2014
,
User Manual—Autogrid 5 V9—Automated Grid Generator for Turbomachinery
.
17.
Verschueren
,
H.
,
Hall
,
C. A.
, and
Wilson
,
M. J.
,
2020
, “
Mid-Span Stall Inception in a Transonic Fan
,”
Proceedings of ASME Turbo Expo 2020
, Paper No. GT2020-16031.
18.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
You do not currently have access to this content.