Abstract

The turbine blade leading edge is subjected to harsh conditions due to high heat loads and unfavorable compact structures. To improve the cooling performance, a novel impingement scheme is proposed to be used in a film-cooled turbine blade leading edge. Different from a normal impingement scheme, the novel scheme consists of two rows of staggered impinging jets at oblique angles of ±35 deg, and is thus named as the staggered-oblique impingement scheme. A conjugated numerical investigation is carried out to illustrate the underlying mechanisms of the cooling performance. Three typical jet Reynolds numbers, 6000, 12,000, and 18,000, are studied using the validated SST k–ω turbulence model. Numerical results show a flow separation within the staggered-oblique impinging jets, which causes the discharge coefficient for the novel impingement scheme lower than that for the normal impingement scheme. Results also reveal a phenomenon difference that two symmetric vortices are induced by each normal impinging jet, while only one vortex appears on the acute angle side along with each staggered-oblique impinging jet. The flow fields of the staggered-oblique impingement scheme create a more uniform heat transfer distribution and a maximum of 23.7% higher area-averaged Nusselt number than the normal impingement scheme. The area-averaged overall cooling effectiveness for the staggered-oblique impingement scheme is higher than the normal impingement scheme by a maximum of 4.8%. The uniformity and the enhancement of the overall cooling effectiveness arise from the wall jet being fully developed and affecting a larger area of the target wall. The adiabatic cooling effectiveness is similar for both impingement schemes. This indicates that the improvement in overall cooling effectiveness for the staggered-oblique impingement scheme mainly arises from internal heat transfer.

References

1.
Krewinkel
,
R.
,
2013
, “
A Review of Gas Turbine Effusion Cooling Studies
,”
Int. J. Heat Mass Transfer
,
66
, pp.
706
722
.
2.
Al Dabagh
,
A.
,
Andrews
,
G.
,
Abdul Husain
,
R.
,
Husain
,
C.
,
Nazari
,
A.
, and
Wu
,
J.
,
1990
, “
Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient
,”
ASME J. Turbomach.
,
112
(
3
), pp.
467
476
.
3.
Cho
,
H.-H.
,
Rhee
,
D. H.
, and
Goldstein
,
R.
,
2004
, “
Effect of Hole Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Hole Spacing
,”
Turbo Expo: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
, Vol.
41685
, pp.
643
652
.
4.
Xiao-ming
,
T.
,
Jing-zhou
,
Z.
, and
Hua-sheng
,
X.
,
2015
, “
Experimental Investigation on Impingement/Effusion Cooling With Short Normal Injection Holes
,”
Int. Commun. Heat Mass Transfer
,
69
, pp.
1
10
.
5.
Wang
,
K.
,
Li
,
H.
, and
Zhu
,
J.
,
2014
, “
Experimental Study of Heat Transfer Characteristic on Jet Impingement Cooling With Film Extraction Flow
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
620
629
.
6.
Fu
,
J.
,
Cao
,
Y.
,
Zhang
,
C.
, and
Zhu
,
J.
,
2020
, “
Investigation of the Conjugate Heat Transfer and Flow Field for a Flat Plate With Combined Film and Impingement Cooling
,”
J. Therm. Sci.
,
29
, pp.
955
971
.
7.
Sweeney
,
P.
, and
Rhodes
,
J.
,
2000
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(
1
), pp.
170
177
.
8.
Liu
,
C.-I.
,
Xie
,
G.
,
Wang
,
R.
, and
Ye
,
L.
,
2018
, “
Study on Analogy Principle of Overall Cooling Effectiveness for Composite Cooling Structures With Impingement and Effusion
,”
Int. J. Heat Mass Transfer
,
127
, pp.
639
650
.
9.
Xie
,
G.
,
Liu
,
C.-I.
,
Ye
,
L.
,
Wang
,
R.
,
Niu
,
J.
, and
Zhai
,
Y.
,
2020
, “
Effects of Impingement Gap and Hole Arrangement on Overall Cooling Effectiveness for Impingement/Effusion Cooling
,”
Int. J. Heat Mass Transfer
,
152
, p.
119449
.
10.
Bunker
,
R.
, and
Metzger
,
D.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I–Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.
11.
Metzger
,
D.
, and
Bunker
,
R.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part II–Impingement Cooling With Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
459
466
.
12.
Taslim
,
M.
, and
Khanicheh
,
A.
,
2005
, “
Experimental and Numerical Study of Impingement on An Airfoil Leading-Edge With and Without Showerhead and Gill Film Holes
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
47268
,
Reno, NV
,
June 6–9
, pp.
49
60
.
13.
Taslim
,
M.
, and
Bethka
,
D.
,
2007
, “
Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Crossflow
,”
Turbo Expo: Power for Land, Sea, and Air
,
Montreal, QC, Canada
,
May 14–17
, Vol.
47934
,
939
947
.
14.
Liu
,
Z.
,
Ye
,
L.
,
Wang
,
C.
, and
Feng
,
Z.
,
2014
, “
Numerical Simulation on Impingement and Film Composite Cooling of Blade Leading Edge Model for Gas Turbine
,”
Appl. Therm. Eng.
,
73
(
2
), pp.
1432
1443
.
15.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
Turbo Expo: Power for Land, Sea, and Air
,
Vienna, Austria
,
June 14–17
, Vol.
41677
, pp.
251
259
.
16.
Dyson
,
T. E.
,
Bogard
,
D. G.
,
Piggush
,
J. D.
, and
Kohli
,
A.
,
2013
, “
Overall Effectiveness for a Film Cooled Turbine Blade Leading Edge With Varying Hole Pitch
,”
ASME J. Turbomach.
,
135
(
3
), p.
031011
.
17.
Dobrowolski
,
L. D.
,
Bogard
,
D. G.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2009
, “
Numerical Simulation of a Simulated Film Cooled Turbine Blade Leading Edge Including Conjugate Heat Transfer Effects
,”
ASME International Mechanical Engineering Congress and Exposition
,
Lake Buena Vista, FL
,
Nov. 13–19
, Vol.
43826
, pp.
2145
2156
.
18.
Ravelli
,
S.
,
Dobrowolski
,
L.
, and
Bogard
,
D. G.
,
2010
, “
Evaluating the Effects of Internal Impingement Cooling on a Film Cooled Turbine Blade Leading Edge
,”
Turbo Expo: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, Vol.
43994
, pp.
1655
1665
.
19.
Fan
,
X.
,
Li
,
L.
,
Zou
,
J.
, and
Zhou
,
Y.
,
2019
, “
Cooling Methods for Gas Turbine Blade Leading Edge: Comparative Study on Impingement Cooling, Vortex Cooling and Double Vortex Cooling
,”
Int. Commun. Heat Mass Transfer
,
100
, pp.
133
145
.
20.
Zhang
,
M.
,
Wang
,
N.
, and
Han
,
J.-C.
,
2019
, “
Internal Heat Transfer of Film-Cooled Leading Edge Model With Normal and Tangential Impinging Jets
,”
Int. J. Heat Mass Transfer
,
139
, pp.
193
204
.
21.
Wang
,
N.
,
Chen
,
A. F.
,
Zhang
,
M.
, and
Han
,
J.-C.
,
2018
, “
Turbine Blade Leading Edge Cooling With One Row of Normal or Tangential Impinging Jets
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
6
), p.
062201
.
22.
Fawzy
,
H.
,
Zheng
,
Q.
, and
Jiang
,
Y.
,
2020
, “
Impingement Cooling Using Different Arrangements of Conical Nozzles in a Film Cooled Blade Leading Edge
,”
Int. Commun. Heat Mass Transfer
,
112
, p.
104506
.
23.
Fawzy
,
H.
,
Zheng
,
Q.
,
Jiang
,
Y.
,
Lin
,
A.
, and
Ahmad
,
N.
,
2020
, “
Conjugate Heat Transfer of Impingement Cooling Using Conical Nozzles With Different Schemes in a Film-Cooled Blade Leading-Edge
,”
Appl. Therm. Eng.
,
177
, p.
115491
.
24.
Nathan
,
M. L.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2014
, “
Adiabatic and Overall Effectiveness for the Showerhead Film Cooling of a Turbine Vane
,”
ASME J. Turbomach.
,
136
(
3
), p.
031005
.
25.
Liu
,
Z.
,
Li
,
F.
,
Zhang
,
Z.
,
Feng
,
Z.
, and
Simon
,
T. W.
,
2021
, “
Conjugate Heat Transfer Predictions on Combined Impingement and Film Cooling of a Blade Leading Edge Model
,”
Heat Transfer Eng.
,
42
(
16
), pp.
1363
1380
.
26.
Zhou
,
J.
,
Wang
,
X.
,
Li
,
J.
, and
Li
,
Y.
,
2018
, “
Effects of Film Cooling Hole Locations on Flow and Heat Transfer Characteristics of Impingement/Effusion Cooling at Turbine Blade Leading Edge
,”
Int. J. Heat Mass Transfer
,
126
, pp.
192
205
.
27.
Chen
,
G.
,
Liu
,
Y.
,
Rao
,
Y.
,
He
,
J.
, and
Qu
,
Y.
,
2019
, “
Numerical Investigation on Conjugate Heat Transfer of Impingement/Effusion Double-Wall Cooling With Different Crossflow Schemes
,”
Appl. Therm. Eng.
,
155
, pp.
515
524
.
28.
Jiang
,
Y.
,
Zheng
,
Q.
,
Dong
,
P.
,
Yao
,
J.
,
Zhang
,
H.
, and
Gao
,
J.
,
2015
, “
Conjugate Heat Transfer Analysis of Leading Edge and Downstream Mist-Air Film Cooling on Turbine Vane
,”
Int. J. Heat Mass Transfer
,
90
, pp.
613
626
.
29.
Liu
,
Z.
, and
Feng
,
Z.
,
2011
, “
Numerical Simulation on the Effect of Jet Nozzle Position on Impingement Cooling of Gas Turbine Blade Leading Edge
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4949
4959
.
30.
Menter
,
F.
,
1993
, “
Zonal Two Equation KW Turbulence Models for Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
Orlando, FL
,
June 6–9
, p.
2906
.
31.
Yang
,
L.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2013
, “
Effect of Film Cooling Arrangement on Impingement Heat Transfer on Turbine Blade Leading Edge
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
55140
,
American Society of Mechanical Engineers
, p.
V03AT12A037
.
32.
Qingzong
,
X.
,
Qiang
,
D.
,
Pei
,
W.
, and
Junqiang
,
Z.
,
2019
, “
Computational Study of Film Cooling and Flowfields on a Stepped Vane Endwall With a Row of Cylindrical Hole and Interrupted Slot Injections
,”
Int. J. Heat Mass Transfer
,
134
, pp.
796
806
.
33.
Maikell
,
J.
,
Bogard
,
D.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2011
, “
Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects
,”
ASME J. Turbomach.
,
133
(
1
), p.
011014
.
34.
Singh
,
P.
, and
Ekkad
,
S. V.
,
2017
, “
Effects of Spent Air Removal Scheme on Internal-Side Heat Transfer in an Impingement-Effusion System at Low Jet-to-Target Plate Spacing
,”
Int. J. Heat Mass Transfer
,
108
, pp.
998
1010
.
35.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.