Abstract

The use of foreign gases in laboratory film cooling experiments is attractive since variable density ratios can be achieved with coolant-to-freestream temperature ratios near unity, often reducing the cost and difficulty of the experimental campaign. In adiabatic effectiveness experiments employing pressure sensitive paint along with the mass transfer analogy to heat transfer, isothermal surfaces are often an experimental requirement. Furthermore, low-temperature laboratory experiments using thermal techniques often employ relatively close matches between the coolant and freestream temperatures. Using foreign gases, however, introduces off-diagonal couplings of heat and mass transport, which can produce unexpected results in film cooling experiments. In particular, the Dufour effect—also called the diffusion-thermo effect—which is the transfer of thermal energy by mass transfer processes, can manifest in surface temperatures that break the traditional bounds of thermal adiabatic effectiveness experiments: outside the upper and lower bounds of the coolant and freestream temperature. Beyond the expected confusion for the researcher, this effect can also be detrimental to those that assume that matching the coolant and freestream temperatures are the necessary and sufficient conditions to ensure isothermal surface conditions in traditional pressure sensitive paint experiments. In this work, the influence of cooling gas selection, experimental temperature, and experimental freestream turbulence conditions are explored on a simulated leading edge with compound injection from a cylindrical cooling hole. Air, argon, carbon dioxide, helium, and nitrogen coolants were analyzed due to their use in prior film cooling studies. The Dufour effect was found to be significant when using helium as the coolant, though temperature separation was also observed in argon and carbon dioxide cases. Additionally, elevated experiment temperatures generally increased temperature separation. Finally, high freestream turbulence intensity was found to reduce, but not eliminate, the Dufour effect in helium experiments.

References

1.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
2.
Li
,
S. J.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(
5
), p.
051011
.
3.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
.
4.
Thole
,
K. A.
,
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1992
, “
Mean Temperature Measurements of Jets With a Crossflow for Gas Turbine Film Cooling Application
,”
Rotating Machinery Transport Phenomena
, pp.
69
85
.
5.
Gutierrez
,
D.
,
Yoon
,
C.
,
Furgeson
,
M. T.
,
Veley
,
E. M.
,
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2022
, “
Evaluation of Adjoint Optimized Holes—Part I Baseline Performance
,”
Proceedings of the ASME Turbo Expo, 2022
, Paper No. GT2022-83436.
6.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2022
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME J. Turbomach.
,
144
(
12
), p.
121003
.
7.
Ammari
,
H. D.
,
Hay
,
N.
, and
Lampard
,
D.
,
1990
, “
The Effect of Density Ratio on the Heat Transfer Coefficient From a Film-Cooled Flat Plate
,”
ASME J. Turbomach.
,
112
(
7
), pp.
444
450
.
8.
Wiese
,
C. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2018
, “
Experimental Evaluation of Thermal and Mass Transfer Techniques to Measure Adiabatic Effectiveness With Various Coolant to Freestream Property Ratios
,”
ASME J. Turbomach.
,
140
(
2
), p.
021001
.
9.
Fischer
,
J. P.
,
McNamara
,
L. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2020
, “
Scaling Flat Plate, Low-Temperature Adiabatic Effectiveness Results Using the Advective Capacity Ratio
,”
ASME J. Turbomach.
,
142
(
8
), p.
081010
.
10.
McNamara
,
L. J.
,
Fischer
,
J. P.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2021
, “
Scaling Considerations for Thermal and Pressure-Sensitive Paint Methods Used to Determine Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
143
(
1
), p.
011004
.
11.
Wiese
,
C. J.
, and
Rutledge
,
J. L.
,
2021
, “
The Effects of Specific Heat and Viscosity on Film Cooling Behavior
,”
ASME J. Turbomach.
,
143
(
4
), p.
041008
.
12.
Wiese
,
C. J.
,
Anthony Fischer
,
J. P.
,
Bryant
,
C. E.
, and
Rutledge
,
J. L.
,
2022
, “
The Dufour Effect in Film Cooling Experiments With Foreign Gases
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
4
), p.
041016
.
13.
Kays
,
W.
,
Crawford
,
C.
, and
Weigand
,
B.
,
2004
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw Hill
,
New York
.
14.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
, 2nd ed. (revised),
John Wiley & Sons, Inc.
,
New York
.
15.
Hort
,
W.
,
Linz
,
S. J.
, and
Lücke
,
M.
,
1992
, “
Onset of Convection in Binary Gas Mixtures: Role of the Dufour Effect
,”
Phys. Rev. A
,
45
(
6
), pp.
3737
3748
.
16.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
,
1954
,
Molecular Theory of Gases and Liquids
,
John Wiley & Sons, Inc.
,
New York
.
17.
Grew
,
K. E.
, and
Ibbs
,
T. L.
,
1952
,
Thermal Diffusion in Gases
,
Cambridge University Press
,
Cambridge, MA
.
18.
Lee
,
J. K.
,
Kim
,
S.
,
Ko
,
J.
,
Chung
,
I.
,
Fonov
,
S.
,
Forlines
,
A.
, and
Crafton
,
J.
,
2010
, “
Pressure-Sensitive Paint System for Measurements in a Large Low Speed Wind Tunnel
,”
27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference
, Paper No. AIAA 2010-4917.
19.
Rutledge
,
J. L.
,
2009
, “
Pulsed Film Cooling on a Turbine Blade Leading Edge
,”
Ph.D. dissertation
,
Department of Aeronautics and Astronautics, Air Force Institute of Technology
,
Wright-Patterson AFB, OH
.
20.
Touloukian
,
Y. S.
,
Saxena
,
S. C.
, and
Hestermans
,
P.
,
1970
, Thermophysical Properties of Matter, 11: Viscosity.
Nonmetallic Gases and Liquids
,
IFI/Plenum
,
New York
.
21.
Touloukian
,
Y. S.
, and
Makita
,
T.
,
1970
, Thermophysical Properties of Matter, 6: Specific Heat.
Nonmetallic Gases and Liquids
,
IFI/Plenum
,
New York
.
22.
Touloukian
,
Y. S.
,
Liley
,
P. E.
, and
Saxena
,
S. C.
,
1970
, Thermophysical Properties of Matter, 3: Thermal Conductivity.
Nonmetallic Gases and Liquids
,
IFI/Plenum
,
New York
.
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.