Abstract

This article investigates the heat transfer coefficient and the film cooling effectiveness in a turbine center frame (TCF). The TCF is a duct connecting the high-pressure turbine (HPT) to the low-pressure turbine (LPT) and is equipped with nonturning airfoils (struts). The TCF is operated in a product-representative 1.5-stage test turbine setup working under Mach number similarity. Upstream of the TCF, an unshrouded HPT is operated with four individually adjustable purge flow injections through the forward and aft cavities on the hub and tip of the rotor. The heat transfer coefficient and the purge film cooling effectiveness are measured on the hub and the nonturning struts of the aerodynamically aggressive TCF using infrared thermography and tailor-made heating foils. To further extend the film cooling investigation, the seed gas concentration technique, in conjunction with the heat-mass transfer analogy, is used as a second film cooling measurement technique. Seeding the HPT cavities with different foreign gases reveals every individual purge flow's contribution to the global film cooling effectiveness in the TCF. In addition, the seed gas technique extends the investigated area for film cooling to the optically inaccessible shroud of the TCF. The heat transfer in the TCF was found to be dominated by secondary flow features of the upstream HPT. Longitudinal streaks of alternating high and low heat transfer were found on the hub connected to the number and the position of the upstream HPT vanes. A similar pattern was found in the film cooling effectiveness, where the film cooling streaks were situated between the high heat transfer streaks. The film cooling coverage on the shroud was found to be even, symmetric, and superior to the hub cooling performance, with around 10% less usage of purge mass flow.

References

1.
European Environment Agency, European Union Aviation Safety Agency and EUROCONTROL
,
2019
, “
European Aviation Environmental Report 2019
.”
2.
European Commission, Directorate-General for Mobility and Transport, Directorate-General for Research and Innovation
,
2011
, “Flightpath 2050: Europe’s Vision for Aviation: Maintaining Global Leadership and Serving Society’s Needs,”
Publications Office
.
3.
Grewe
,
V.
,
Gangoli Rao
,
A.
,
Grönstedt
,
T.
,
Xisto
,
C.
,
Linke
,
F.
,
Melkert
,
J.
,
Middel
,
J.
, et al
,
2021
, “
Evaluating the Climate Impact of Aviation Emission Scenarios Towards the Paris Agreement Including COVID-19 Effects
,”
Nat. Commun.
,
12
(
1
), p.
3841
.
4.
GE Aerospace
,
2019
, “GE9X Commercial Aircraft Engine,” https://www.geaviation.com/commercial/engines/ge9x-commercial-aircraft-engine, Accessed November 21, 2019.
5.
MTU Aero Engines AG
,
2022
, “Mittendrin, das Turbinenzwischengehäuse für Großtriebwerke,” MTU AEROREPORT, https://aeroreport.de/de/innovation/mittendrin-das-turbinenzwischengehaeuse-fuer-grosstriebwerke, Accessed September 15, 2022.
6.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
,
102
(
2
), pp.
257
267
.
7.
Hylton
,
L. D.
,
Mihelc
,
M. B.
,
Turner
,
E. R.
,
Nealey
,
D. A.
, and
York
,
A.
,
1983
, “Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes,” NASA CR 168015, Final Report for Contract No. NAS3-22761.
8.
Hartnett
,
J. P.
,
Birkebak
,
R. C.
, and
Eckert
,
E. R. G.
,
1961
, “
Velocity Distributions, Temperature Distributions, Effectiveness and Heat Transfer for Air Injected Through a Tangential Slot Into a Turbulent Boundary Layer
,”
ASME J. Heat Transfer.
,
83
(
3
), pp.
293
305
.
9.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
249
270
.
10.
Thole
,
K. A.
, and
Knost
,
D. G.
,
2005
, “
Heat Transfer and Film-Cooling for the Endwall of a First Stage Turbine Vane
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5255
5269
.
11.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2008
, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
(
1
), p.
011014
.
12.
Zerobin
,
S.
,
Aldrian
,
C.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
Impact of Individual High-Pressure Turbine Rotor Purge Flows on Turbine Center Frame Aerodynamics
,”
ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
, ASME Paper No. GT2017-63616.
13.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
(
3
), pp.
476
481
.
14.
Hummel
,
T.
,
Kneer
,
J.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2015
, “Experimentelle Untersuchung des Wärmeübergangs und der Filmkühleffektivität einer dreidimensionalen konturierten Turbinen-seitenwand,” Deutscher Luft und Raumfahrtkongress 2015, urn:nbn:de:101:1-201601293626.
15.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
16.
Fischer
,
J. P.
,
McNamara
,
L. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2020
, “
Scaling Flat-Plate, Low-Temperature Adiabatic Effectiveness Results Using the Advective Capacity Ratio
,”
ASME J. Turbomach.
,
142
(
8
), p.
081010
.
17.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
(
4
), pp.
249
279
.
18.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Ramesh
,
A.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Behavior of Turbine Center Frames Under the Presence of Purge Flows
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
, Paper No: GT2017-63606.
19.
Patinios
,
M.
,
Merli
,
F.
,
Hafizovic
,
A.
, and
Göttlich
,
E.
,
2021
, “
The Interaction of Purge Flows With Secondary Flow Features in Turbine Center Frames
,”
ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition
, Paper No: GT2021-58586, p.
V02CT35A002
.
20.
Arroyo Osso
,
C.
,
Johansson
,
T. G.
, and
Wallin
,
F.
,
2012
, “
Experimental Heat Transfer Investigation of an Aggressive Intermediate Turbine Duct
,”
ASME J. Turbomach.
,
134
(
5
), p.
051026
.
21.
Jagerhofer
,
P. R.
,
Patinios
,
M.
,
Erlacher
,
G.
,
Glasenapp
,
T.
,
Göttlich
,
E.
, and
Farisco
,
F.
,
2021
, “
A Sector-Cascade Test Rig for Measurements of Heat Transfer in Turbine Center Frames
,”
ASME J. Turbomach.
,
143
(
7
), p.
071015
.
22.
Steiner
,
M.
,
2018
, “
Einfluss der Zuströmung auf den Turbinenübergangkanal
,”
Ph.D. thesis
,
Graz University of Technology
,
Steiermark, Austria
.
23.
Jagerhofer
,
P. R.
,
Patinios
,
M.
,
Glasenapp
,
T.
,
Göttlich
,
E.
, and
Farisco
,
F.
,
2022
, “
The Influence of Purge Flow Parameters on Heat Transfer and Film Cooling in Turbine Center Frames
,”
ASME J. Turbomach.
,
144
(
7
), p.
071001
.
24.
Jagerhofer
,
P. R.
,
Woisetschläger
,
J.
,
Erlacher
,
G.
, and
Göttlich
,
E.
,
2021
, “
Heat Transfer and Film Cooling Measurements on Aerodynamic Geometries Relevant for Turbomachinery
,”
SN Appl. Sci.
,
3
(
12
), p.
889
.
25.
Erhard
,
G.
, and
Gehrer
,
A.
,
2000
, “
Design and Construction of a Transonic Test-Turbine Facility
,”
ASME Turbo Expo 2000: Power for Land, Sea, and Air
, Paper No: 2000-GT-0480.
26.
Neumayer
,
F.
,
Kulhanek
,
G.
,
Pirker
,
H.
,
Jericha
,
H.
,
Seyr
,
A.
, and
Sanz
,
W.
,
2001
, “
Operational Behavior of a Complex Transonic Test Turbine Facility
,”
Proceedings of the ASME Turbo Expo
,
New Orleans, LA
.
27.
Steiner
,
M.
,
Zerobin
,
S.
,
Bauinger
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,”
Development and Commissioning of a Purge Flow System in a Two Spool Test Facility
,
Stockholm, Sweden
,
April
, pp.
3
7
.
28.
Faustmann
,
C.
, and
Göttlich
,
E.
,
2014
, “
Aerodynamics and Acoustics of Turning Mid Turbine Frames in a Two-Shaft Test Turbine
,”
ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, pp.
16
20
,
ASME Paper No. GT2014-25568.
29.
Sterzinger
,
P. Z.
,
Merli
,
F.
,
Peters
,
A.
,
Behre
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2021
, “
Impact of Turbine-Strut Clocking on the Performance of a Turbine Center Frame
,”
ASME J. Turbomach.
,
143
(
5
), p.
051011
.
30.
McNamara
,
L. J.
,
2019
, “Scaling Film Cooling Adiabatic Effectiveness With Mass Transfer and Thermal Experimental Techniques”, Theses and Dissertations, 2227, Air Force Institute of Technology, Wright-Patterson AFB, OH, https://scholar.afit.edu/etd/2227.
31.
Sellers
,
J. P.
, Jr
.,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
32.
Joint Committee for Guides in Metrology
,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
. JCGM 100:2008, GUM 1995, https://www.bipm. org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. Accessed February 1, 2020.
33.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
34.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2011
,
Heat and Mass Transfer: Fundamentals & Applications
,
McGraw-Hill
,
New York
.
35.
Sibson
,
R.
,
1981
, “A Brief Description of Natural Neighbor Interpolation (Chapter 2),”
Interpreting Multivariate Data
,
V.
Barnett
, ed.,
John Wiley
,
Chichester
, pp.
21
36
.
36.
Sivrioglu
,
M.
,
1991
, “
An Analysis of the Effects of Pressure Gradient and Streamline Curvature on Film Cooling Effectiveness
,”
Wärme- und Stoffübertragung
,
26
(
2
), pp.
103
107
.
37.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Heat Flux Reduction From Film Cooling and Correlation of Heat Transfer Coefficients From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
699
709
.
You do not currently have access to this content.