Abstract

The tradeoff between higher efficiency and wider stability of performance map is still one of the bottlenecks to hamper the further research and development of advanced multistage axial-flow compressor. The recent rapid growth of computational resources and artificial intelligence has enabled data mining as one of the most effective and potential ways to gain a deep insight into the complex correlations between aerodynamic performance and three-dimensional geometry parameters. In the open literatures, however, few research works have been found on using the data mining that is independent of design optimization to extract priori design guidelines for multistage axial-flow compressor mainly due to the lack of proper data mining method focused on the interpretation of metamodel with full use of limited time-consuming computational fluid dynamics dataset. To tackle this issue, a metamodel-interpreted data mining framework is developed in which extreme gradient boosting (XGBoost) metamodel combined with Shapley additive explanation (SHAP) model are employed to locally interpret the feature importance of each sample in the computational fluid dynamics dataset and then extract the design guidelines in terms of the most influential geometry parameters and their beneficial variation directions. The developed method is applied to data mining of design guidelines for efficiency and stability enhancement of a front 3.5-stage transonic axial-flow compressor in ship-board gas turbine usage. The results show that the aerodynamic performance of the investigated multistage compressor is most sensitive to three-dimensional geometry parameters related to blade lean, blade twist, and variable stators. Specially, the variable stators mainly affect the stall margin at part speed. The blade lean mainly influences the adiabatic efficiency at design speed as well as the stall margin at both speeds, while the blade twist mainly influences the aerodynamic performance at design speed. New designs followed by the design guidelines are obtained and critical performance indicators related to the goals of the data mining task are verified. The stall margin at part speed is widened to 5.87% with adjustment of blade lean and twist and further to 23.31% with additional adjustment of variable stators. The peak adiabatic efficiency at design speed is improved by 0.06% in spite of extremely limited potential for efficiency enhancement of the original design. The present work is of scientific significance as well as industrial application value in the three-dimensional design optimization of advanced multistage axial-flow compressor at the affordable computational cost.

References

1.
Houghton
,
T.
, and
Day
,
I.
,
2012
, “
Stability Enhancement by Casing Grooves: The Importance of Stall Inception Mechanism and Solidity
,”
ASME J. Turbomach.
,
134
(
2
), p.
021003
.
2.
Siller
,
U.
,
Voß
,
C.
, and
Nicke
,
E.
,
2009
, “
Automated Multidisciplinary Optimization of a Transonic Axial Compressor
,” AIAA Paper No. 2009-863.
3.
Michelassi
,
V.
, and
He
,
L.
,
2021
, “
Editorial: Data-Driven Modelling and High-Fidelity Simulations
,”
J. Glob. Power Propuls. Soc.
,
2021
(
5
), pp.
1
2
.
4.
Michelassi
,
V.
, and
Ling
,
J.
,
2021
, “
Challenges and Opportunities for Artificial Intelligence and High-Fidelity Simulations in Turbomachinery Applications: A Perspective
,”
J. Glob. Power Propuls. Soc.
,
2021
(
5
), pp.
1
14
.
5.
Maimon
,
O.
, and
Rokach
,
L.
,
2005
,
Data Mining and Knowledge Discovery Handbook
,
Springer
,
Boston, MA
.
6.
Losi
,
E.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
,
Bechini
,
G.
,
Cota
,
G.
, and
Riguzzi
,
F.
,
2021
, “
Structured Methodology for Clustering Gas Turbine Transients by Means of Multivariate Time Series
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031014
.
7.
Sepe
,
M.
,
Graziano
,
A.
,
Badora
,
M.
,
Di Stazio
,
A.
,
Bellani
,
L.
,
Compare
,
M.
, and
Zio
,
E.
,
2021
, “
A Physics-Informed Machine Learning Framework for Predictive Maintenance Applied to Turbomachinery Assets
,”
J. Glob. Power Propuls. Soc.
,
2021
(
5
), pp.
1
15
.
8.
Michelassi
,
V.
,
Allegorico
,
C.
,
Cioncolini
,
S.
,
Graziano
,
A.
,
Tognarelli
,
L.
, and
Sepe
,
M.
,
2018
, “
Machine Learning in Gas Turbines
,”
Mech. Eng.
,
140
(
9
), pp.
54
55
.
9.
Matsui
,
K.
,
Perez
,
E.
,
Kelly
,
R.
,
Tani
,
N.
, and
Jemcov
,
A.
,
2021
, “
Calibration of Spalart–Allmaras Model for Simulation of Corner Flow Separation in Linear Compressor Cascade
,”
J. Glob. Power Propuls. Soc.
,
2021
(
5
), pp.
1
16
.
10.
Tieghi
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
, and
Tucci
,
F. A.
,
2021
, “
A Machine-Learnt Wall Function for Rotating Diffusers
,”
ASME J. Turbomach.
,
143
(
8
), p.
081012
.
11.
Lav
,
C.
,
Haghiri
,
A.
, and
Sandberg
,
R.
,
2021
, “
RANS Predictions of Trailing-Edge Slot Flows Using Heat-Flux Closures Developed with CFD-Driven Machine Learning
,”
J. Glob. Power Propuls. Soc.
,
2021
(
5
), pp.
1
13
.
12.
Milani
,
P. M.
,
Ling
,
J.
, and
Eaton
,
J. K.
,
2019
, “
Physical Interpretation of Machine Learning Models Applied to Film Cooling Flows
,”
ASME J. Turbomach.
,
141
(
1
), p.
011004
.
13.
Heyse
,
J.
,
Mishra
,
A.
, and
Iaccarino
,
G.
,
2021
, “
Estimating RANS Model Uncertainty Using Machine Learning
,”
J. Glob. Power Propuls. Soc.
,
2021
(
5
), pp.
1
14
.
14.
Li
,
Z.
, and
Zheng
,
X.
,
2017
, “
Review of Design Optimization Methods for Turbomachinery Aerodynamics
,”
Prog. Aerosp. Sci.
,
93
, pp.
1
23
.
15.
Guo
,
Z.
,
Song
,
L.
,
Zhou
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Multi-objective Aerodynamic Optimization Design and Data Mining of a High Pressure Ratio Centrifugal Impeller
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092602
.
16.
Li
,
C.
,
Wang
,
J.
,
Guo
,
Z.
,
Song
,
L.
, and
Li
,
J.
,
2019
, “
Aero-Mechanical Multidisciplinary Optimization of a High Speed Centrifugal Impeller
,”
Aerosp. Sci. Technol.
,
95
(
10
), p.
105452
.
17.
Song
,
L.
,
Guo
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2018
, “
Optimization and Knowledge Discovery of a Three-Dimensional Parameterized Vane With Nonaxisymmetric Endwall
,”
J. Propul. Power
,
34
(
1
), pp.
234
246
.
18.
Li
,
J.
,
Ji
,
L.
, and
Zhou
,
L.
,
2020
, “
Design Optimization of a Blended Blade and Endwall in a Compressor Cascade
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021003
.
19.
Leonardon
,
V.
,
Nouvellon
,
A.
,
Lepot
,
I.
,
Sainvitu
,
C.
,
Chérière
,
E.
, and
Baert
,
L.
,
2020
, “
Aerodynamic Optimization of the Low-Pressure Turbine Module: Exploiting Surrogate Models in a High-Dimensional Design Space
,”
ASME J. Turbomach.
,
142
(
3
), p.
031005
.
20.
Adjei
,
R. A.
,
Fan
,
C.
,
Wang
,
W.
, and
Liu
,
Y.
,
2021
, “
Multidisciplinary Design Optimization for Performance Improvement of an Axial Flow Fan Using Free-Form Deformation
,”
ASME J. Turbomach.
,
143
(
1
), p.
011003
.
21.
Oyama
,
A.
,
Nonomura
,
T.
, and
Fujii
,
K.
,
2010
, “
Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using Proper Orthogonal Decomposition
,”
J. Aircr.
,
47
(
5
), pp.
1756
1762
.
22.
Luo
,
J.
,
2018
, “
Design Optimization of the Last Stage of a 4.5-Stage Compressor Using a POD-Based Hybrid Model
,”
Aerosp. Sci. Technol.
,
76
, pp.
303
314
.
23.
Ju
,
Y.
,
Qin
,
R.
,
Kipouros
,
T.
,
Parks
,
G.
, and
Zhang
,
C.
,
2016
, “
“A High-Dimensional Design Optimisation Method for Centrifugal Impellers
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
230
(
3
), pp.
272
288
.
24.
Song
,
L.
,
Guo
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Research on Metamodel-Based Global Design Optimization and Data Mining Methods
,”
ASME J. Eng. Gas Turbines Power
,
138
(
9
), p.
092604
.
25.
Qin
,
R.
,
Ju
,
Y.
,
Spence
,
S.
, and
Zhang
,
C.
,
2021
, “
Metamodel-Driven Data Mining Model to Support Three-Dimensional Design of Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
143
(
12
), p.
121013
.
26.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.
27.
Pullan
,
G.
,
2021
, “
Making Use of Our Data
,”
J. Glob. Power Propuls. Soc.
,
2021
(
5
), pp.
1
13
.
28.
Chen
,
T. Q.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
, pp.
785
794
.
29.
Lundberg
,
S. M.
, and
Lee
,
S. I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems
,
Long Beach, CA
,
Dec. 4–9
, pp.
4768
4777
.
30.
Wirth
,
R.
, and
Hipp
,
J.
,
2000
, “
CRISP-DM: Towards a Standard Process Model for Data Mining
,”
Proceedings of the Fourth International Conference on the Practical Applications of Knowledge Discovery and Data Mining
,
Manchester, UK
,
Apr. 11–13
, Vol. 1, pp.
29
39
.
31.
Martinez-Plumed
,
F.
,
Contreras-Ochando
,
L.
,
Ferri
,
C.
,
Hernandez-Orallo
,
J.
,
Kull
,
M.
,
Lachiche
,
N.
,
Ramirez-Quintana
,
M. J.
, and
Flach
,
P.
,
2021
, “
CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories
,”
IEEE Trans. Knowl. Data Eng.
,
33
(
8
), pp.
3048
3061
.
32.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
,
2005
, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plan. Inference
,
134
(
1
), pp.
268
287
.
33.
Lundberg
,
S. M.
,
Erion
,
G. G.
, and
Lee
,
S. I.
,
2018
, “
Consistent Individualized Feature Attribution for Tree Ensembles
,” arXiv preprint arXiv:1802.03888.
34.
Lundberg
,
S. M.
,
Erion
,
G.
,
Chen
,
H.
,
DeGrave
,
A.
,
Prutkin
,
J. M.
,
Nair
,
B.
,
Katz
,
R.
,
Himmelfarb
,
J.
,
Bansal
,
N.
, and
Lee
,
S. I.
,
2020
, “
From Local Explanations to Global Understanding With Explainable AI for Trees
,”
Nat. Mach. Intell.
,
2
(
1
), pp.
56
67
.
35.
NUMECA International
,
2013
, “User Manual-FINETM/Turbo v9.0,” Brussels, Belgium.
36.
Zhang
,
X. W.
,
Ju
,
Y. P.
, and
Zhang
,
C. H.
,
2022
, “
Geometry Scaling Technique and Application to Aerodynamic Redesign of Multi-stage Transonic Axial-Flow Compressors
,”
Aerosp. Sci. Technol.
,
121
(
10
), p.
107303
.
37.
Lei
,
F.
,
Ju
,
Y.
, and
Zhang
,
C.
,
2021
, “
A Rapid and Automatic Optimal Design Method for Six-Stage Axial-Flow Industry Compressor
,”
J. Therm. Sci.
,
30
(
5
), pp.
1658
1673
.
38.
Yamada
,
K.
,
Furukawa
,
M.
,
Tamura
,
Y.
,
Saito
,
S.
,
Matsuoka
,
A.
, and
Nakayama
,
K.
,
2017
, “
Large-Scale Detached-Eddy Simulation Analysis of Stall Inception Process in a Multistage Axial Flow Compressor
,”
ASME J. Turbomach.
,
139
(
7
), p.
071002
.
39.
Dickens
,
T.
, and
Day
,
I.
,
2011
, “
The Design of Highly Loaded Axial Compressors
,”
ASME J. Turbomach.
,
133
(
3
), p.
031007
.
40.
Reitenbach
,
S.
,
Schnoes
,
M.
,
Becker
,
R. G.
, and
Otten
,
T.
,
2015
, “
Optimization of Compressor Variable Geometry Settings Using Multi-Fidelity Simulation
,” ASME Paper No. 2015-GT-42832.
41.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.
42.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part I: Experimental Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051002
.
You do not currently have access to this content.