Abstract

The present work describes the coupled pressure–velocity instability in the suction side boundary layer of a transonic high-pressure turbine blade. The application case is the VKI LS89 turbine blade MUR237. Modal decomposition techniques such as the proper orthogonal decomposition (POD) and the dynamic mode decomposition (DMD) are applied to data obtained by large eddy simulations (LES) to inspect the existing correlation between pressure fluctuations induced by traveling pressure waves and the velocity disturbances growing into the boundary layer. To this end, POD and DMD were applied to both velocity and pressure fields from the leading edge up to the end of the blade surface. DMD was computed on a 2D slice oriented parallel to the blade surface inside the boundary layer. Data were ordered along the curvilinear abscissas, so that the most spatially amplified waves were obtained. Interestingly, unstable velocity modes were detected in the front blade suction side where pressure waves dominate. The unstable velocity modes computed upstream of the peak suction highlighted the occurrence of elongated streaky structures showing spanwise fluctuations which are typical of their instability. The comparison of pressure and velocity modes highlighted the occurrence of pressure-related fluctuations in the velocity field at the same time instants at which streak instability is observed. The analysis carried out in this work suggests that pressure waves can provoke localized instability of boundary layer streaks, which then break up further downstream causing transition.

References

1.
Paxson
,
D.
, and
Mayle
,
R.
,
1991
, “
Laminar Boundary Layer Interaction With an Unsteady Passing Wake
,”
ASME J. Turbomach.
,
113
(
3
), pp.
419
427
.
2.
Cardamone
,
P.
,
Stadtmuller
,
P.
, and
Fottner
,
L.
,
2002
, “
Numerical Investigation of the Wake-Boundary Layer Interaction on a Highly Loaded LP Turbine Cascade Blade
,”
Turbo Expo: Power for Land, Sea, and Air
,
Amsterdam, The Netherlands
, Vol. 3610, pp.
401
409
.
3.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2021
, “
Fluid Dynamics of Axial Turbomachinery: Blade- and Stage-Level Simulations and Models
,”
Annu. Rev. Fluid Mech.
,
54
, pp.
255
285
.
4.
Sieverding
,
C.
, and
Manna
,
M.
,
2020
, “
A Review on Turbine Trailing Edge Flow
,”
Int. J. Turbomach. Propul. Power
,
5
(
2
), p.
10
.
5.
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2018
, “
DDES Analysis of the Wake Vortex Related Unsteadiness and Losses in the Environment of a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
4
), p.
041001
.
6.
Göttlich
,
E.
,
Woisetschläger
,
J.
,
Pieringer
,
P.
,
Hampel
,
B.
, and
Heitmeir
,
F.
,
2006
, “
Investigation of Vortex Shedding and Wake-Wake Interaction in a Transonic Turbine Stage Using Laser-Doppler-Velocimetry and Particle-Image-Velocimetry
,”
ASME. J. Turbomach
,
128
(
1
), pp.
178
187
.
7.
Duan
,
P.
,
Tan
,
C. S.
,
Scribner
,
A.
, and
Malandra
,
A.
,
2018
, “
Loss Generation in Transonic Turbine Blading
,”
ASME J. Turbomach.
,
140
(
4
), p.
041006
.
8.
Dupuy
,
D.
,
Gicquel
,
L.
,
Odier
,
N.
,
Duchaine
,
F.
, and
Arts
,
T.
,
2020
, “
Analysis of the Effect of Intermittency in a High-Pressure Turbine Blade
,”
Phys. Fluids
,
32
(
9
), p.
095101
.
9.
Asghar
,
M. A.
,
Liu
,
Y.
,
Cui
,
J.
, and
Lu
,
L.
,
2018
, “
Investigation of Unsteady Flow Interactions in a Transonic High Pressure Turbine Using Nonlinear Harmonic Method
,”
Energies
,
11
(
2
), p.
342
.
10.
Nolan
,
K.
, and
Zaki
,
T.
,
2013
, “
Conditional Sampling of Transitional Boundary Layers in Pressure Gradients
,”
J. Fluid Mech.
,
728
, pp.
306
339
.
11.
Delery
,
J. M.
,
1985
, “
Shock Wave/Turbulent Boundary Layer Interaction and Its Control
,”
Prog. Aerosp. Sci.
,
22
(
4
), pp.
209
280
.
12.
Giles
,
M. B.
,
1990
, “
Stator/Rotor Interaction in a Transonic Turbine
,”
J. Propul. Power
,
6
(
5
), pp.
621
627
.
13.
Klinner
,
J.
,
Hergt
,
A.
,
Grund
,
S.
, and
Willert
,
C. E.
,
2021
, “
High-Speed PIV of Shock Boundary Layer Interactions in the Transonic Buffet Flow of a Compressor Cascade
,”
Exp. Fluids
,
62
(
3
), pp.
1
19
.
14.
Knight
,
D.
, and
Mortazavi
,
M.
,
2018
, “
Hypersonic Shock Wave Transitional Boundary Layer Interactions—A Review
,”
Acta Astronaut.
,
151
, pp.
296
317
.
15.
Ligrani
,
P. M.
,
McNabb
,
E. S.
,
Collopy
,
H.
,
Anderson
,
M.
, and
Marko
,
S. M.
,
2020
, “
Recent Investigations of Shock Wave Effects and Interactions
,”
Adv. Aerodyn.
,
2
(
1
), pp.
1
23
.
16.
Lengani
,
D.
,
Simoni
,
D.
,
Pichler
,
R.
,
Sandberg
,
R.
,
Michelassi
,
V.
, and
Bertini
,
F.
,
2018
, “
Identification and Quantification of Losses in a LPT Cascade by POD Applied to LES Data
,”
Int. J. Heat Fluid Flows
,
70
, pp.
28
40
.
17.
Dellacasagrande
,
M.
,
Sterzinger
,
P.
,
Zerobin
,
S.
,
Merli
,
F.
,
Wiesinger
,
L.
,
Peters
,
A.
,
Maini
,
G.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2019
, “
Unsteady Flow Interactions Between a High- and Low-Pressure Turbine: Part 2—Rotor-Synchronic Averaging and Proper Orthogonal Decomposition of the Unsteady Flow Fields
,”
Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
, Vol. 58554, American Society of Mechanical Engineers, p. V02AT45A011.
18.
Lumley
,
J. L.
,
1967
, “The Structure of Inhomogeneous Turbulent Flows,”
Atmospheric Turbulence and Radio Wave Propagation
,
A. M.
Yaglom
, and
V. I.
Tartarsky
, eds.,
Defense Technical Information Center
,
Belvoir, VA
, pp.
166
177
.
19.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
20.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
21.
Tu
,
J. H.
,
2013
, “
Dynamic Mode Decomposition: Theory and Applications
,”
Ph.D. Thesis, Princeton University, Princeton, NJ
.
22.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Dowell
,
E. H.
,
2000
, “
Proper Orthogonal Decomposition Technique for Transonic Unsteady Aerodynamic Flows
,”
AIAA J.
,
38
(
10
), pp.
1853
1862
.
23.
Kou
,
J.
,
Le Clainche
,
S.
, and
Zhang
,
W.
,
2018
, “
A Reduced-Order Model for Compressible Flows With Buffeting Condition Using Higher Order Dynamic Mode Decomposition With a Mode Selection Criterion
,”
Phys. Fluids
,
30
(
1
), p.
016103
.
24.
Borée
,
J.
,
2003
, “
Extended Proper Orthogonal Decomposition: A Tool to Analyse Correlated Events in Turbulent Flows
,”
Exp. Fluids
,
35
(
2
), pp.
188
192
.
25.
Arts
,
T.
,
de Rouvroit
,
M.
, and
Rutherford
,
A.
,
1990
, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade: A Test Case for Inviscid and Viscous Flow Computations
.” Technical note Von Karman Institute for Fluid Dynamics, von Karman Institute for Fluid Dynamics.
26.
Bertolini
,
E.
,
Pieringer
,
P.
, and
Sanz
,
W.
,
2021
, “
Effect of Different Subgrid-Scale Models and Inflow Turbulence Conditions on the Boundary Layer Transition in a Transonic Linear Turbine Cascade
,”
Int. J. Turbomach. Propul. Power
,
6
(
3
), p.
35
.
27.
Bertolini
,
E.
,
Pieringer
,
P.
, and
Sanz
,
W.
,
2020
, “
Large Eddy Simulation of a Transonic Linear Cascade With Synthetic Inlet Turbulence
,”
Proceeding of ASME Turbo Expo 2020, London, Great Britain, Vol. 2C: Turbomachinery
, 06, No. GT2020-14461.
28.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.
29.
Giles
,
M. B.
,
1990
, “
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
(
12
), pp.
2050
2058
.
30.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
.
31.
Kushwaha
,
A.
,
Park
,
J. S.
, and
Graham
,
M. D.
,
2017
, “
Temporal and Spatial Intermittencies Within Channel Flow Turbulence Near Transition
,”
Phys. Rev. Fluids
,
2
(
2
), p.
024603
.
32.
Jee
,
S.
,
Joo
,
J.
, and
Medic
,
G.
,
2016
, “
Large-Eddy Simulation of a High-Pressure Turbine Vane With Inlet Turbulence
,”
Proceeding of ASME Turbo Expo 2016, Seoul, South Korea, Vol. 2D: Turbomachinery
, No. GT2016-56980.
33.
Lumley
,
J. L.
,
1970
,
Stochastic Tools in Turbulence
, Vol.
12
,
Courier Corporation
,
North Chelmsford, MA
.
34.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. Part I–III
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
590
.
35.
Kutz
,
J. N.
,
Brunton
,
S. L.
,
Brunton
,
B. W.
, and
Proctor
,
J. L.
,
2016
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
,
SIAM
,
Philadelphia, PA
.
36.
Dellacasagrande
,
M.
,
Verdoya
,
J.
,
Barsi
,
D.
,
Lengani
,
D.
, and
Simoni
,
D.
,
2020
, “
Dynamic Mode Decomposition Analysis of Separated Boundary Layers Under Variable Reynolds Number and Free-Stream Turbulence
,”
Turbo Expo: Power for Land, Sea, and Air
,
Virtual, Online
.
37.
Leschziner
,
M.
,
2015
,
Statistical Turbulence Modelling for Fluid Dynamics-Demystified: An Introductory Text for Graduate Engineering Students
,
World Scientific
,
London, UK
.
38.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
,
2001
, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
,
430
(
5
), pp.
149
168
.
You do not currently have access to this content.