Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Shock/boundary layer interactions (SBLI) are a fundamental fluid mechanics problem relevant in a wide range of applications including transonic rotors in turbomachinery. This paper uses wall-resolved large eddy simulation (LES) to examine the interaction of normal shocks with laminar and turbulent inflow boundary layers in transonic flow. The calculations were performed using GENESIS, a high-order, unstructured LES solver. The geometry created for this study is a transonic passage with a convergent-divergent nozzle that expands the flow to the desired Mach number upstream of the shock and then introduces constant radius curvature to simulate local airfoil camber. The Mach numbers in the divergent section of the transonic passage simulate single-stage commercial fan blades. The results predicted with the LES calculations show significant differences between laminar and turbulent SBLI in terms of shock structure, boundary layer separation and transition, and aerodynamic losses. For laminar flow into the shock, significant flow separation and low-frequency unsteadiness occur, while for turbulent flow into the shock, both the boundary layer loss and the low-frequency unsteadiness are reduced. The time period of the unsteadiness was hypothesized to align with the time it takes for turbulent structures to convect from the shock to the trailing edge and acoustic disturbances to travel back from the trailing edge to the shock, and this is supported by the LES results.

References

1.
Liepmann
,
H. W.
,
1946
, “
The Interaction Between Boundary Layer and Shock Waves in Transonic Flow
,”
J. Aeronaut. Sci.
,
13
(
12
), pp.
623
637
.
2.
Hergt
,
A.
,
Klinner
,
J.
,
Wellner
,
J.
,
Willert
,
C.
,
Grund
,
W.
,
Steinert
,
W.
, and
Beversdorff
,
M.
,
2019
, “
The Present Challenge of Transonic Compressor Blade Design
,”
ASME J. Turbomach.
,
141
(9), p. 091004.
3.
Priebe
,
S.
,
Wilkin
,
D.
,
Breeze-Stringfellow
,
A.
,
Jothiprasad
,
G.
, and
Cheung
,
L. C.
,
2020
, “
Large Eddy Simulation of Laminar and Turbulent Shock/Boundary Layer Interactions in a Transonic Passage
,” ASME IGTI Turbo Expo, Paper GT2020-14244.
4.
Priebe
,
S.
,
Wilkin
,
D.
,
Breeze-Stringfellow
,
A.
,
Mousavi
,
A.
, and
Bhaskaran
,
R.
,
2022
, “
Large Eddy Simulations of a Transonic Airfoil Cascade
,” ASME IGTI Turbo Expo, Paper GT2022-80683.
5.
Bode
,
C.
,
Przytarski
,
P. J.
,
Leggett
,
J.
, and
Sandberg
,
R. D.
,
2022
, “
Highly Resolved Large-Eddy Simulations of a Transonic Compressor Stage Midspan Section. Part I: Effect of Inflow Disturbances
,” ASME IGTI Turbo Expo, Paper GT2022-81673.
6.
Délery
,
J. M.
,
1983
, “
Experimental Investigation of Turbulent Properties in Transonic Shock/Boundary-Layer Interactions
,”
AIAA J.
,
21
(
2
), pp.
180
185
.
7.
Bachalo
,
W. D.
, and
Johnson
,
D. A.
,
1986
, “
Transonic, Turbulent Boundary-Layer Separation Generated on an Axisymmetric Flow Model
,”
AIAA J.
,
24
(
3
), pp.
437
443
.
8.
Dussauge
,
J.-P.
,
Dupont
,
P.
, and
Debiève
,
J.-F.
,
2006
, “
Unsteadiness in Shock Wave Boundary Layer Interactions With Separation
,”
Aerospace Sci. Technol.
,
10
(
2
), pp.
85
91
.
9.
Clemens
,
N. T.
, and
Narayanaswamy
,
V.
,
2014
, “
Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions
,”
Annu. Rev. Fluid. Mech.
,
46
, pp.
469
492
.
10.
Touber
,
E.
, and
Sandham
,
N. D.
,
2009
, “
Large-Eddy Simulation of Low-Frequency Unsteadiness in a Turbulent Shock-Induced Separation Bubble
,”
Theoret. Comput. Fluid Dyn.
,
23
(
2
), pp.
79
107
.
11.
Priebe
,
S.
, and
Martín
,
M. P.
,
2012
, “
Low-Frequency Unsteadiness in Shock Wave–Turbulent Boundary Layer Interaction
,”
J. Fluid. Mech.
,
699
, pp.
1
49
.
12.
Lee
,
B. H. K.
,
1990
, “
Oscillatory Shock Motion Caused by Transonic Shock Boundary-Layer Interaction
,”
AIAA J.
,
28
(
5
), pp.
942
944
.
13.
Lee
,
B. H. K.
,
2001
, “
Self-Sustained Shock Oscillations on Airfoils at Transonic Speeds
,”
Prog. Aerosp. Sci.
,
37
(2), pp.
147
196
.
14.
Hartmann
,
A.
,
Feldhusen
,
A.
, and
Schröder
,
W.
,
2013
, “
On the Interaction of Shock Waves and Sound Waves in Transonic Buffet Flow
,”
Phys. Fluids
,
25
(2), p.
026101
.
15.
Strazisar
,
A. J.
,
1985
, “
Investigation of Flow Phenomena in a Transonic Fan Rotor Using Laser Anemometry
,”
ASME J. Eng. Gas. Turbines Power
,
107
(2), pp.
427
435
.
16.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2022
, “
Fluid Dynamics of Axial Turbomachinery: Blade- and Stage-Level Simulations and Models
,”
Annu. Rev. Fluid Mech.
,
54
, pp.
255
285
.
17.
Sandham
,
N. D.
,
Yao
,
Y. F.
, and
Lawal
,
A. A.
,
2003
, “
Large-Eddy Simulation of Transonic Turbulent Flow Over a Bump
,”
Int. J. Heat Fluid Flow
,
24
(4), pp.
584
595
.
18.
Pirozzoli
,
S.
,
Bernardini
,
M.
, and
Grasso
,
F.
,
2010
, “
Direct Numerical Simulation of Transonic Shock/Boundary Layer Interaction Under Conditions of Incipient Separation
,”
J. Fluid Mech.
,
657
, pp.
361
393
.
19.
Gourdain
,
N.
,
Sicot
,
F.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2014
, “
Large Eddy Simulation of Flows in Industrial Compressors: A Path From 2015 to 2035
,”
Phil. Trans. R. Soc. A
,
372
(2022), p.
20130323
.
20.
Spalart
,
P. R.
,
Belyaev
,
K. V.
,
Garbaruk
,
A. V.
,
Shur
,
M. L.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2017
, “
Large-Eddy and Direct Numerical Simulations of the Bachalo-Johnson Flow With Shock-Induced Separation
,”
Flow Turbul. Combust.
,
99
(
3–4
), pp.
865
885
.
21.
Uzun
,
A.
, and
Malik
,
M. R.
,
2019
, “
Wall-Resolved Large-Eddy Simulations of Transonic Shock-Induced Flow Separation
,”
AIAA J.
,
57
(
5
), pp.
1955
1972
.
22.
Wang
,
Z. J.
,
Li
,
Y.
,
Jia
,
F.
,
Laskowski
,
G.
,
Kopriva
,
J.
,
Paliath
,
U.
, and
Bhaskaran
,
R.
,
2017
, “
Towards Industrial Large Eddy Simulation Using the FR/CPR Method
,”
Comput. Fluids
,
156
(
12
), pp.
579
589
.
23.
Huynh
,
H. T.
,
2007
,
A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods
. AIAA Paper 2007-4079.
24.
Wang
,
Z. J.
, and
Gao
,
H.
,
2009
, “
A Unifying Lifting Collocation Penalty Formulation Including the Discontinuous Galerkin Spectral Volume/difference Methods for Conservation Laws on Mixed Grids
,”
J. Comput. Phys.
,
228
(
2
), pp.
8161
8186
.
25.
Bhaskaran
,
R.
,
Jia
,
F.
,
Laskowski
,
G. M.
,
Wang
,
Z. J.
, and
Paliath
,
U.
,
2017
, “
Towards High-Order Large Eddy Simulation of Aero-Thermal Flows for Turbomachinery Applications
,” ASME IGTI Turbo Expo, Paper GT2017-63358.
26.
Bhaskaran
,
R.
, and
Ledezma
,
G.
,
2020
, “
Near Wall Resolution Requirements for High-Order FR/CPR Method for Wall-Resolved Large Eddy Simulations
,” ASME IGTI Turbo Expo, Paper GT2020-14432.
27.
Li
,
Y.
, and
Wang
,
Z. J.
,
2017
, “
A Convergent and Accuracy Preserving Limiter for the FR/CPR Method
,” AIAA Paper 2017-0756.
28.
Li
,
Q.
, and
Coleman
,
G. N.
,
2003
, “
DNS of an Oblique Shock Wave Impinging Upon a Turbulent Boundary Layer
,” Direct and Large-Eddy Simulation V, ERCOFTAC Series Volume 9.
29.
Schlatter
,
P.
, and
Örlü
,
R.
,
2010
, “
Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
659
, pp.
116
126
.
30.
Délery
,
J.
, and
Marvin
,
J. G.
,
1986
, “Shock-Wave Boundary Layer Interactions,” AGARDograph. 280.
31.
Schlichting
,
H.
,
2000
,
Boundary-Layer Theory
, 8th ed.
Springer
, Berlin Heidelberg.
32.
Harun
,
Z.
,
Monty
,
J. P.
,
Mathis
,
R.
, and
Marusic
,
I.
,
2013
, “
Pressure Gradient Effects on the Large-Scale Structure of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
715
, pp.
477
498
.
33.
Wenzel
,
C.
,
Gibis
,
T.
,
Kloker
,
M.
, and
Rist
,
U.
,
2019
, “
Self-Similar Compressible Turbulent Boundary Layers With Pressure Gradients. Part 1. Direct Numerical Simulation and Assessment of Morkovin’s Hypothesis
,”
J. Fluid Mech.
,
880
, pp.
239
283
.
34.
Dixit
,
S. A.
, and
Ramesh
,
O. N.
,
2010
, “
Large-Scale Structures in Turbulent and Reverse-Transitional Sink Flow Boundary Layers
,”
J. Fluid Mech.
,
649
, pp.
233
273
.
35.
Van Dyke
,
M.
,
1982
,
An Album of Fluid Motion
,
Parabolic Press, Stanford, CA.
.
36.
Cumpsty
,
N. A.
, and
Horlock
,
J. H.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
128
(
1
), pp.
120
129
.
37.
Hudy
,
L. M.
,
Naguib
,
A. M.
, and
Humphreys
,
W. M.
,
2003
, “
Wall-Pressure-Array Measurements Beneath a Separating/Reattaching Flow Region
,”
Phys. Fluids
,
15
(
3
), pp.
706
717
.
38.
Erengil
,
M. E.
, and
Dolling
,
D. S.
,
1991
, “
Unsteady Wave Structure Near Separation in a Mach 5 Compression Ramp Interaction
,”
AIAA J.
,
29
(
5
), pp.
728
735
.
39.
Dupont
,
P.
,
Haddad
,
C.
, and
Debiève
,
J. F.
,
2006
, “
Space and Time Organization in a Shock-Induced Separated Boundary Layer
,”
J. Fluid Mech.
,
559
, pp.
255
277
.
40.
Gostelow
,
J. P.
,
Melwani
,
N.
, and
Walker
,
G. J.
,
1995
, “
Effects of Streamwise Pressure Gradient on Turbulent Spot Development
,” ASME International Gas Turbine and Aeroengine Congress & Exposition, Paper 95-GT-303.
41.
Priebe
,
S.
,
Tu
,
J. H.
,
Rowley
,
C. W.
, and
Martín
,
M. P.
,
2016
, “
Low-Frequency Dynamics in a Shock-Induced Separated Flow
,”
J. Fluid Mech.
,
807
, pp.
441
477
.
42.
Pasquariello
,
V.
,
Hickel
,
S.
, and
Adams
,
N. A.
,
2017
, “
Unsteady Effects of Strong Shock-Wave/boundary-Layer Interaction at High Reynolds Number
,”
J. Fluid Mech.
,
823
, pp.
617
657
.
43.
Wu
,
W.
,
Meneveau
,
C.
, and
Mittal
,
R.
,
2020
, “
Spatio-Temporal Dynamics of Turbulent Separation Bubbles
,”
J. Fluid Mech.
,
883
, p.
A45
.
44.
Smits
,
A. J.
, and
Dussauge
,
J. -P.
,
2006
,
Turbulent Shear Layers in Supersonic Flow
, 2nd ed.
Springer
,
New York
.
45.
Loginov
,
M. S.
,
Adams
,
N. A.
, and
Zheltovodov
,
A. A.
,
2006
, “
Large-Eddy Simulation of Shock-Wave/Turbulent-Boundary-Layer Interaction
,”
J. Fluid Mech.
,
565
, pp.
135
169
.
46.
Przytarski
,
P. J.
,
Bode
,
C.
,
Leggett
,
J.
, and
Sandberg
,
R. D.
,
2022
, “
High-Fidelity Simulations of the Flow Unsteadiness in the Rotor of a Transonic Compressor Stage
,” 16th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Paper ISUAAAT16-33.
You do not currently have access to this content.