Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Here, we describe a combined design, numerical, and experimental program intended substantially to increase the lift and work of low-pressure turbine stages. This exercise is critically dependent upon the appropriate modeling of boundary-layer transition over airfoil surfaces. The effort proceeds through the design of turbine stages consistent with future unmanned air vehicle engine cycles. Then, a series of experiments are described that increase in complexity while driving the technology to more realistic embodiments. Representative experimental data are compared to pre-test predictions of the flow field, and it is shown that acceptable Reynolds-lapse behavior is achievable even for turbines with significantly increased lift and work over state-of-the-art systems. Additionally, it is shown that through the judicious use of appropriate flow control technologies, it is possible to improve further the lapse characteristics of very high-lift airfoils. Finally, the benefits of applying such high-lift, high-work low-pressure turbine components are outlined with respect to a notional aircraft system, and future experiments are proposed.

References

1.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2013
, “
Toward the Expansion of the Low-Pressure-Turbine Airfoil Design Space
,”
ASME J. Turbomach.
,
135
(
6
), p.
061007
.
2.
Hodson
,
H. P.
,
1990
, “
Modeling Unsteady Transition and Its Effects on Profile Loss
,”
ASME J. Turbomach.
,
12
(
10
), pp.
691
701
.
3.
Howell
,
R. J.
,
Hodson
,
H. P.
,
Schulte
,
V.
,
Steiger
,
R. D.
,
Schiffer
,
H.-P.
,
Haselbach
,
F.
, and
Harvey
,
N. W.
,
2002
, “
Boundary Layer Development in the BR710 and BR715 LP Turbines – The Implementation of High-Lift and Ultra-High-Lift Concepts
,”
ASME J. Turbomach.
,
124
(
7
), pp.
385
392
.
4.
Norris
,
G.
,
2009
, “
Upgrade Promise: Product Improvements Should Bring the Trent 1000 Close to Spec Before 787 Tests
,”
Aviation Week Space Technol.
,
170
(
14
), p.
36
.
5.
Norris
,
G.
,
2009
, “
Turbine Upgrade
,”
Aviation Week Space Technol.
,
170
(
18
), pp.
44
45
.
6.
Langston
,
L. S.
,
2012
, “
The Coming Single-Aisle, Narrow-Body Aircraft Bonanza
,”
Mech. Eng.
,
134
(
4
), pp.
53
54
.
7.
Lavagnoli
,
S.
,
Simonassi
,
L.
,
Lopes
,
G.
,
Merli
,
F.
, and
Torre
,
F.
,
2022
, “Secondary and Leakage Flow Effects in High Speed, Low-Pressure Turbines: On-Line Database.” https://zenodo.org/record/7264762
8.
Torre
,
D.
,
García-Valdecasas
,
G.
,
Puente
,
A.
,
Hernández
,
D.
, and
Luque
,
S.
,
2021
, “
Design and Testing of a Multi-Stage IP Turbine for Future Geared Turbofans
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Virtual, Online
,
June 7–11
.
9.
Frank
,
M.
,
2011
, “U.S. Department of Energy Technology Readiness Assessment Guide,” DoE Report No. G 413.3-4A. https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04a-admchg1/@@images/file
10.
HQ, USAF
,
2019
,
USAF Science and Technology Strategy 2030
,
Department of the Air Force
,
Washington, DC
. https://www.af.mil/portals/1/documents/2019 saf story attachments/air force science and technology strategy.pdf?ver=2019-04-17-131216-723
11.
Clark
,
J. P.
,
Koch
,
P. J.
,
Ooten
,
M. K.
,
Johnson
,
J. J.
,
Dagg
,
J.
,
McQuilling
,
M. W.
,
Huber
,
F.
, and
Johnson
,
P. D.
,
2009
, “Design of Turbine Components to Answer Research Questions in Unsteady Aerodynamics and Heat Transfer,” AFRL Technical Report No. AFRL-RZ-WP-TR-2009-2180.
12.
Fielding
,
L.
,
2000
,
Turbine Design: The Effect of Axial Flow Turbine Performance of Parameter Variation
,
ASME Press
,
NY
.
13.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
104
(
1
), pp.
111
119
.
14.
Schmitz
,
J. T.
,
Perez
,
E.
,
Morris
,
S. C.
,
Corke
,
T. C.
,
Clark
,
J. P.
,
Koch
,
P. J.
, and
Puterbaugh
,
S. L.
,
2015
, “
Highly Loaded Low-Pressure Turbine: Design, Numerical, and Experimental Analysis
,”
AIAA J. Prop. Power
,
32
(
1
), pp.
142
152
.
15.
Perez
,
E.
,
Schmitz
,
J. T.
,
Jaffa
,
N. A.
,
Jemcov
,
A.
,
Cameron
,
J. D.
, and
Morris
,
S. C.
,
2019
, “
Detailed Experimental Measurement and RANS Simulation of a Low Pressure Turbine With High Lift Blading
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
,
June 17–21
.
16.
Lyall
,
M. E.
,
King
,
P. I.
,
Sondergaard
,
R.
,
Clark
,
J. P.
, and
McQuilling
,
M. W.
,
2012
, “
An Investigation of Reynolds Lapse Rate for Highly Loaded Low-Pressure Turbine Airfoils With Forward and Aft Loading
,”
ASME J. Turbomach.
,
134
(
5
), p.
051028
.
17.
Asghar
,
A.
,
Allan
,
W. D. E.
,
Pym
,
S. A.
, and
Clark
,
J. P.
,
2019
, “
A Low Reynolds Number Experimental Evaluation of Tubercles on a Low-Pressure Turbine Cascade
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Phoenix, AZ
,
June 17–21
.
18.
Volino
,
R. J.
,
2011
, “
Combined Effects of Wakes and Pulsed Vortex Generator Jet Flow Control on Boundary Layer Separation on a Very High Lift Low Pressure Turbine Airfoil
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Vancouver, BC
,
June 6–10
.
19.
Cherry
,
D.
, and
Dengler
,
R.
,
1984
, “
The Aerodynamic Design and Performance of the NASA/GE E3 Low-Pressure Turbine
,”
20th Joint Propulsion Conference
,
Cincinnati, OH
,
June 11–13
.
20.
Leach
,
K.
,
Thulin
,
R.
, and
Howe
,
D.
,
1982
, “Energy Efficient Engine: Turbine Intermediate Case and Low-Pressure Turbine Component Test Hardware Detailed Design Report,” NASA Contractor Report No. CR-167973.
21.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis
,
ASME Press
,
New York
.
22.
Van den Braembussche
,
R. A.
,
1999
,
VKI Lecture Series 1999–02
,
von Karman Institute
,
Sint-Genesius-Rode, Belgium
.
23.
Paniagua
,
G.
,
2012
,
NATO-EN-RTO-AVT 207, VKI Lecture Series 2012–06
,
North Atlantic Treaty Organization
,
Brussels, Belgium
.
24.
Ni
,
R. H.
,
Humber
,
W.
,
Ni
,
M.
,
Capece
,
V. R.
,
Ooten
,
M. K.
, and
Clark
,
J. P.
,
2016
, “
Aerodynamic Damping Predictions for Oscillating Airfoils in Cascades Using Moving Meshes
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Seoul, South Korea
,
June 13–17
.
25.
Davis
,
R. L.
,
Dannenhoffer
,
J. F.
, and
Clark
,
J. P.
,
2011
, “
Conjugate Design/Analysis Procedure for Film-Cooled Turbine Airfoil Sections
,”
AIAA J. Prop. Power
,
27
(
1
), pp.
61
70
.
26.
Dorney
,
D. J.
, and
Davis
,
R. L.
,
1992
, “
Navier-Stokes Analysis of Turbine Blade Heat Transfer and Performance
,”
ASME J. Turbomach.
,
114
(
4
), pp.
795
806
.
27.
Praisner
,
T. J.
, and
Clark
,
J. P.
,
2007
, “
Predicting Transition in Turbomachinery, Part I – A Review and New Model Development
,”
ASME J. Turbomach.
,
129
(
1
), pp.
1
13
.
28.
Clark
,
J. P.
,
2022
, “
An Alternate Means to Form Non-Dimensional Products in Dimensional Analysis
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Rotterdam, The Netherlands
,
June 13–17
.
29.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezeveci
,
D. C.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Montreal, QC, Canada
,
May 14–17
.
30.
Lyall
,
M. E.
,
King
,
P. I.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2014
, “
Endwall Loss Reduction of High Lift Pressure Turbine Airfoils Using Profile Contouring – Part I: Airfoil Design
,”
ASME J. Turbomach.
,
136
(
8
), p.
081005
.
31.
Taylor
,
J. V.
,
2019
, “
Complete Flow Conditioning Gauzes
,”
Exp. Fluids
,
60
(
3
), p.
35
.
32.
Ooten
,
M. K.
,
Anthony
,
R. J.
,
Lethander
,
A. T.
, and
Clark
,
J. P.
,
2016
, “
Unsteady Aerodynamic Interaction in a Closely-Coupled Turbine Consistent With Contra-Rotation
,”
ASME J. Turbomach.
,
138
(
6
), p.
061004
.
33.
Zavitz
,
K.
, and
Sjoander
,
S. A.
,
2000
, “
Design of Low-Speed Cascades for Investigating Viscous Effects in High-Speed Axial Turbines
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Munich, Germany
,
May 8–11
.
34.
Giovannini
,
M.
,
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2015
, “
Scaling Three-Dimensional Low-Pressure Turbine Blades for Low-Speed Testing
,”
ASME J. Turbomach.
,
138
(
11
), p.
111001
.
35.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2013
, “
Blade Loading and Its Application in the Mean-Line Design of Low-Pressure Turbines
,”
ASME J. Turbomach.
,
135
(
3
), p.
021032
.
36.
Bons
,
J. P.
,
Benton
,
S.
,
Bernardini
,
C.
, and
Bloxham
,
M. J.
,
2018
, “
Active Flow Control for Low Pressure Turbines
,”
AIAA J.
,
56
(
7
), pp.
2687
2698
.
37.
Nowak
,
H. D.
,
Lluesma-Rodriguez
,
F.
,
Rahbari
,
I.
,
Clark
,
J. P.
, and
Paniagua
,
G.
,
2022
, “
Response of Separated Boundary Layers to Steady and Pulsated Flow Injection in Transonic Internal Flows
,”
ASME J. Turbomach.
,
145
(
6
), p.
061001
.
38.
Celik
,
A.
,
Mitra
,
A.
,
Agarwal
,
T.
,
Clark
,
J. P.
,
Jacobi
,
I.
, and
Cukurel
,
B.
,
2023
, “
Experimental Investigation of Acoustic Flow Control Mechanism Towards Enhancing Work and Lift Characteristics of Turbines Under Low Reynolds Conditions
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Boston, MA
,
June 26–30
.
39.
Saavedra
,
J.
, and
Paniagua
,
G.
,
2021
, “
Experimental Analysis of Reynolds Effect on Flow Detachment and Sudden Flow Release on a Wall-Mounted Hump
,”
Exp. Therm. Fluid Sci.
,
126
, p.
110398
.
40.
Kerestes
,
J. N.
,
Marks
,
C. R.
,
Clark
,
J. P.
,
Wolff
,
J. M.
,
Ni
,
R. H.
, and
Fletcher
,
N. F.
,
2023
, “
LES Modeling of High-Lift, High-Work LP Turbine Profiles, Part II – Application and Validation
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Boston, MA
,
June 26–30
.
41.
Ni
,
M.
,
Ni
,
L.
,
and Clark
,
R. H.
, and
P
,
J.
,
2023
, “
LES Modeling of High-Lift, High-Work LP Turbine Profiles, Part I – Approach
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
Boston, MA
,
June 26–30
.
42.
Agarwal
,
T.
,
Stratmann
,
M.
,
Julius
,
S.
, and
Cukurel
,
B.
,
2021
, “
Exploring Applicability of Acoustic Heat Transfer Enhancement Across Various Perturbation Elements
,”
ASME J. Turbomach.
,
143
(
3
), p.
031001
.
43.
Yakirevich
,
E.
,
Miezner
,
R.
,
Leizeronok
,
B.
, and
Cukurel
,
B.
,
2018
, “
Continuous Closed-Loop Transonic Linear Cascade for Aero-Thermal Performance Studies in Micro-Turbomachinery
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012301
.
44.
Anthony
,
R. J.
, and
Clark
,
J. P.
,
2013
, “
A Review of the AFRL Turbine Research Facility
,”
Proceedings of the Turbo Expo: Power for Land, Sea, and Air
,
San Antonio, TX
,
June 3–7
.
You do not currently have access to this content.