Graphical Abstract Figure

LWIR thermal imaging system installed in (a) TRF with view of upstream and (b) HPT rotor blades

Graphical Abstract Figure

LWIR thermal imaging system installed in (a) TRF with view of upstream and (b) HPT rotor blades

Close modal

Abstract

This article presents results from the original development of a long wavelength infrared (LWIR) high-pressure turbine (HPT) blade thermal imaging system on a Full-Scale Cooled 1 + 1/2 Stage Rotating Turbine in the Air Force Research Laboratory Turbine Research Facility (TRF) at Wright-Patterson Air Force Base, OH. The TRF is a short-duration transient turbine blowdown rig capable of matching relevant nondimensional parameters such as Reynolds Number, Prandtl Number, and corrected speed, along with cooling pressure ratios. An LWIR HPT blade thermal imaging camera and custom optical probe are carefully designed and installed to capture transient surface temperatures across a 46-blade rotor arranged in a rainbow wheel of cooled and uncooled airfoils. Over 10 transient rotating turbine tests were run acquiring rotating HPT blade images from four different rotor blade views at full rpm. Lessons are shared regarding signal-to-noise challenges of fast transient rotor IR measurements. Together, data from these views show different transient thermal gradients across cooled and uncooled airfoils, revealing insight into cooling flow circumferential platform leakage, and film cooling variations under varying backflow margins. Transient thermal images are also captured showing the effects of momentary hot gas ingestion and film cooling recovery. Furthermore, this article demonstrates the ability to locate individual subsurface blocked cooling hole passages that do not appear in borescope inspection. This experiment is the first to show such behavior on a full-scale rotor at full rpm in the TRF.

References

1.
Anthony
,
R. J.
, and
Haldeman
,
C.
,
2023
, “
Hot Section Thermal Imaging Technology Development: Lessons and Implications for Engine Focused Transient Measurement Techniques
,” ASME Paper No. GT2023-103186
2.
Brummel
,
H.-G.
,
LeMieux
,
D.
,
Voigt
,
M.
, and
Zombo
,
P.
,
2005
, “
On-Line Turbine Blade Monitoring
,”
Power
,
149
(
7
), p.
11
.
3.
Vaßen
,
R.
,
Kagawa
,
Y.
,
Subramanian
,
R.
,
Zombo
,
P. J.
, and
Zhu
,
D.
,
2012
, “
Testing and Evaluation of Thermal-Barrier Coatings
,”
MRS Bull.
,
37
(
10
), pp.
911
916
.
4.
Markham
,
J.
,
Cosgrove
,
J.
,
Scire
,
J.
,
Haldeman
,
C.
, and
Agoos
,
I.
,
2014
, “
Aircraft Engine-Mounted Camera System for Long Wavelength Infrared Imaging of In-Service Thermal Barrier Coated Turbine Blades
,”
Rev. Sci. Instrum.
,
85
(
12
).
5.
Christensen
,
L.
,
Celestina
,
R.
,
Sperling
,
S.
,
Mathison
,
R.
,
Aksoy
,
H.
, and
Liu
,
J.
,
2021
, “
Infrared Temperature Measurements of the Blade Tip for a Turbine Operating at Corrected Engine Conditions
,”
ASME. J. Turbomach.
,
143
(
10
), p.
101005
.
6.
Falsetti
,
C.
,
Sisti
,
M.
, and
Beard
,
P. F.
,
2020
, “
Infrared Thermography and Calibration Techniques for Gas Turbine Applications: A Review
,”
Infrared Phys. Technol
.,
113
, p.
103574
.
7.
Sisti
,
M.
,
Falsetti
,
C.
,
Beard
,
P.
, and
Chana
,
K.
,
2021
, “
Infrared Temperature Measurements on High Pressure Turbine Blades in the Oxford Turbine Research Facility: Calibration and Image Processing Techniques
,”
European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Gdansk, Poland.
8.
Sisti
,
M.
,
Falsetti
,
C.
, and
Beard
,
P. F.
,
2024
, “
Infrared Temperature Measurements on Fast Moving Targets: A Novel Calibration Approach
,”
Measurement
,
225
, p.
113870
.
9.
Lazzi Gazzini
,
S.
,
Schädler
,
R.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2017
, “
Infrared Thermography With Non-Uniform Heat Flux Boundary Conditions on the Rotor Endwall of an Axial Turbine
,”
Meas. Sci. Technol.
,
28
(
2
), p.
025901
.
10.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Thole
,
K. A.
,
Haldeman
,
C. W.
,
Markham
,
J. R.
,
Cosgrove
,
J. E.
,
Carlson
,
A. E.
, and
Scire
,
J. J.
,
2020
, “
Acquisition and Processing Considerations for Infrared Images of Rotating Turbine Blades
,”
Heat Transfer
, ASME Paper No. GT2020-15522.
11.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Wagner
,
J. H.
,
Thole
,
K. A.
,
Arisi
,
A. N.
, and
Haldeman
,
C. W.
,
2023
, “
Effects of Part-to-Part Flow Variations on Overall Effectiveness and Life of Rotating Turbine Blades
,”
ASME J. Turbomach.
,
145
(
6
), p.
061016
.
12.
McCormack
,
K. E.
,
Gailey
,
N. L.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2024
, “
Quantifying Part-to-Part Flow Variations and Cooling Effectiveness in Engine-Run Blades
,”
ASME J. Turbomach.
,
146
(
1
), p.
0110
.
13.
Ostrowski
,
T.
, and
Schiffer
,
H.-P.
,
2021
, “
High-Resolution Heat Transfer Measurements on a Rotating Turbine Endwall With Infrared Thermography
,”
Meas. Sci. Technol.
,
32
(
12
), p.
125207
.
14.
Lesko
,
J.
,
1998
, “
Development of a Thermographic Imaging System for use in Production Based Automotive Engines
,”
Department of Physics and Astronomy
,
Denver, CO
,
Oct. 21
.
15.
Anthony
,
R.
, and
Clark
,
J.
, “
A Review of the AFRL Turbine Research Facility
,” ASME Paper GT2013-94741
16.
Anthony
,
R. J.
,
Clark
,
J. P.
,
Finnegan
,
J. M.
, and
Johnson
,
J. J.
,
2019
, “
3D Experimental and Computational Heat Transfer Assessment of Full-Scale Inlet Vanes with Surface-Optimized Film Cooling, Part 1: Experimental Results
,” ASME Paper No. GT2019-91919.
17.
Anthony
,
R. J.
,
Kennedy
,
S. W.
,
Clark
,
J. P.
,
Finnegan
,
J. M.
,
Johnson
,
P. D.
,
Hendershot
,
J.
, and
Downs
,
J.
,
2011
, “
Flexible Non-Intrusive Heat Flux Instrumentation on the AFRL Research Turbine
,” ASME Paper No. GT2011-46853.
18.
Anthony
,
R. J.
,
Finnegan
,
J.
, and
Clark
,
J.
,
2025
, “
Phantom Cooling Effects on Rotor Blade Surface Heat Flux in a Transonic Full Scale 1 + 1/2 Stage Rotating Turbine
,”
ASME J. Turbomach.
,
147
(
3
), p.
031016
.
You do not currently have access to this content.