Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Estimates of turbomachinery performance trends inform system-level compromises during preliminary design. Existing empirical correlations for efficiency use limited experimental data, while analytical loss models require calibration to yield predictive results. From a set of 3708 radial compressor computations, this paper maps efficiency as a function of mean-line aerodynamics, and determines the governing loss mechanisms. An open-source turbomachinery design code creates annulus and blade geometry, then runs a Reynolds-averaged Navier–Stokes simulation for compressors sampled from the mean-line design space. Polynomial surface fits yield a continuous eight-dimensional representation of the design space for analysis, predicting efficiency with a root-mean-square error of 1.2% points. The results show a balance between surface dissipation in boundary layers and mixing loss due to casing separations sets optimum values for inlet Mach number, hub-to-tip ratio, de Haller number, and backsweep angle. Surface dissipation drives the effect of flow coefficient, with high surface areas at low values, and high velocities at high values. Compact compressor designs are achieved by increasing inlet Mach number, reducing hub-to-tip ratio, and minimizing the radial loading coefficient—all of which reduce efficiency approaching design space boundaries. An interactive web-based tool makes the results available to practising engineers, demonstrating large ensembles of automated designs and simulations as a higher-fidelity replacement for legacy empirical correlations in preliminary design.

References

1.
Casey
,
M.
, and
Robinson
,
C.
,
2021
,
Radial Flow Turbocompressors
,
Cambridge University Press
,
Cambridge
.
2.
Cordier
,
O.
,
1953
, “
Ähnlichkeitsbedingungen Für Strömungsmaschinen
,”
BWK Bd
,
6
(
10
), pp.
337
340
.
3.
Smith
,
S. F.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
Aeronaut. J.
,
69
(
655
), pp.
467
470
.
4.
Rusch
,
D.
, and
Casey
,
M.
,
2013
, “
The Design Space Boundaries for High Flow Capacity Centrifugal Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
031035
.
5.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
6.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2012
, “
Performance Limits of Axial Compressor Stages
,”
Proceedings of ASME GT2012
,
Copenhagen, Denmark
,
June 11–15
, Vol.
8
, pp.
479
489
.
7.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2012
, “
Blade Loading and Its Application in the Mean-Line Design of Low Pressure Turbines
,”
ASME J. Turbomach.
,
135
(
2
), p.
021032
.
8.
Denton
,
J. D.
,
2017
, “
Multall—An Open Source, Computational Fluid Dynamics Based, Turbomachinery Design System
,”
ASME J. Turbomach.
,
139
(
12
), p.
121001
.
9.
Anderson
,
M. R.
,
2018
, “
Improved Smith Chart for Axial Compressor Design
,” Proceedings of ASME GT2018, Vol.
2C
, p.
V02CT42A024
.
10.
Anderson
,
M. R.
,
2019
, “
Comprehensive Smith Charts for Axial Compressor Design
,” Proceedings of ASME GT2019, Vol.
2C
, p.
V02CT41A030
.
11.
Smyth
,
J. M.
, and
Miller
,
R. J.
,
2021
, “
Selecting a Compressor Meridional Topology: Axial, Mixed, Radial
,” Proceedings of ASME GT2021, Vol.
2C
, p.
V02CT34A013
.
12.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.
13.
Taylor
,
J. V.
, and
Miller
,
R. J.
,
2016
, “
Competing Three-Dimensional Mechanisms in Compressor Flows
,”
ASME J. Turbomach.
,
139
(
2
), p.
021009
.
14.
Gunn
,
E. J.
,
Brandvik
,
T.
,
Wilson
,
M. J.
, and
Maxwell
,
R.
,
2022
, “
Fan Stability With Leading Edge Damage: Blind Prediction and Validation
,”
ASME J. Turbomach.
,
144
(
9
), p.
091015
.
15.
Kaufmann
,
S. M.
,
2020
, “A Unified Turbine Preliminary Design Study,” Ph.D. thesis,
University of Cambridge
,
UK
.
16.
Verstraete
,
T.
, and
Alsalihi
,
Z.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.
You do not currently have access to this content.