Abstract

Film-cooling effectiveness and leakage flow play crucial roles in turbine blade heat transfer. In contrast to the conventional trailing edge cutback squealer blade tip (CB tip), this study aims to compare the film-cooling effectiveness of a suction side squealer tip (SS tip) under different blowing ratios and density ratios. This experiment is conducted in a three-blade cascade wind tunnel under transonic conditions. While applying the pressure-sensitive paint (PSP) technique for film-cooling effectiveness measurements, both top-view and side-view perspectives were employed to illustrate the distribution of local cooling effectiveness across various regions of the blade. Furthermore, PSP can be used to estimate the leakage flow across the blade tip by analyzing the local static pressure distribution. For the CB tip, the film-cooling effectiveness within the cavity increases as both the blowing ratio and density ratio increase. The PSP technique clearly captures the accumulation of coolant within the cavity and the coolant discharge near the trailing edge in the vicinity of the squealer cutback. When the blade tip is outfitted with only a suction side squealer, the film-cooling effectiveness on the blade tip is comparable to that of the full squealer with the trailing edge cutback. This similarity is achieved as the CB tip design requires 14–20% more coolant to achieve the same blowing ratios as the SS tip. The advantage of the SS tip is further demonstrated as leakage flow across the tip is reduced compared to the CB tip.

References

1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Han
,
J.-C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer
,
140
(
11
), p.
113001
.
3.
Han
,
J.-C.
, and
Rallabandi
,
A.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), p.
013001
.
4.
Kwak
,
J. S.
, and
Han
,
J.-C.
,
2003
, “
Heat Transfer Coefficients and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
,
125
(
3
), pp.
494
502
.
5.
Kwak
,
J. S.
, and
Han
,
J.-C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
6.
Christophel
,
J.
,
Thole
,
K.
, and
Cunha
,
F.
,
2005
, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part I: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.
,
127
(
2
), pp.
270
277
.
7.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J.-C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
521
530
.
8.
Mhetras
,
S.
,
Yang
,
H.
,
Gao
,
Z.
, and
Han
,
J.-C.
,
2006
, “
Film-Cooling Effectiveness on Squealer Cavity and Rim Walls of Gas-Turbine Blade Tip
,”
AIAA J. Propul. Power
,
22
(
4
), pp.
889
899
.
9.
Gao
,
Z.
,
Narzary
,
D.
,
Mhetras
,
S.
, and
Han
,
J.-C.
,
2009
, “
Effect of Inlet Flow Angle on Gas Turbine Blade Tip Film Cooling
,”
ASME J. Turbomach.
,
131
(
3
), p.
031005
.
10.
Narzary
,
D.
,
Liu
,
K.
,
Han
,
J.-C.
,
Mhetras
,
S.
, and
Landis
,
K.
,
2024
, “
Turbine Blade Tip Film-Cooling and Heat Transfer Measurements at High Blowing Ratios
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, Paper No. GT2014-25793, p.
V05BT13A025
.
11.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J.-C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
12.
Tamunobere
,
O.
, and
Acharya
,
S.
,
2016
, “
Turbine Blade Tip Film Cooling With Blade Rotation—Part I: Tip and Pressure Side Coolant Injection
,”
ASME J. Turbomach.
,
138
(
9
), p.
091002
.
13.
Collopy
,
H.
,
Ligrani
,
P. M.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Effects of Pressure Side Film Cooling Hole Placement and Condition on Adiabatic Film Cooling Effectiveness Characteristics of a Transonic Turbine Blade Tip
,”
Int. J. Heat Mass Transfer
,
199
, p.
123462
.
14.
Ullah
,
I.
,
Alsaleem
,
S. M.
,
Wright
,
L. M.
,
Shiau
,
C.-C.
, and
Han
,
J.-C.
,
2022
, “
Influence of Coolant Density on Turbine Blade Tip Film Cooling at Transonic Cascade Flow Conditions Using the Pressure-Sensitive Paint Technique
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
7
), p.
071008
.
15.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.
16.
Ekkad
,
S.
, and
Han
,
J.-C.
,
2013
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
Proceedings of. ASME 2013 Heat Transfer Summer Conference
,
Minneapolis, Minnesota, USA
,
Jul. 14–19
, Paper No. HT2013-17250, p.
V003T20A003
.
17.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041011
.
18.
Johnson
,
B.
,
Tian
,
W.
,
Zhang
,
K.
, and
Hu
,
H.
,
2014
, “
An Experimental Study of Density Ratio Effects on the Film Cooling Injection From Discrete Holes by Using PIV and PSP Techniques
,”
Int. J. Heat Mass Transfer
,
76
, pp.
337
349
.
19.
Yao
,
J.
,
Xu
,
J.
,
Zhang
,
K.
,
Lei
,
J.
, and
Wright
,
L. M.
,
2019
, “
Effect of Density Ratio on Film-Cooling Effectiveness Distribution and Its Uniformity for Several Hole Geometries on a Flat Plate
,”
ASME J. Turbomach.
,
141
(
5
), p.
051008
.
20.
Mhetras
,
S.
,
Narzary
,
D.
,
Gao
,
Z.
, and
Han
,
J.-C.
,
2008
, “
Effect of a Cutback Squealer and Cavity Depth on Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
130
(
2
), p.
021002
.
21.
Zhang
,
B.-L.
,
Yao
,
C.-Y.
,
Zhu
,
H.-R.
,
Liu
,
C.-L.
, and
Sunden
,
B.
,
2022
, “
Experimental Study on Film Cooling Performance of a Turbine Blade Tip With a Trapezoidal Slot Cooling Scheme in Transonic Flow Using PSP Technique
,”
Exp. Therm. Fluid. Sci.
,
130
, p. 110513.
22.
Wang
,
H.
,
Tao
,
Z.
, and
Li
,
H.
,
2020
, “
A Tip Region Film Cooling Study of the Fan-Shaped Hole Using PSP
,”
Int. J. Heat Mass Transfer
,
153
, p. 119378.
23.
Liu
,
R.
,
Li
,
H.
,
Lin
,
J.
,
You
,
R.
, and
Tao
,
Z.
,
2022
, “
An Experimental and Numerical Investigation of Film Cooling Effectiveness on a Gas Turbine Blade Tip Region
,”
Int. J. Therm. Sci.
,
177
, p. 107544.
24.
Jeong
,
J. Y.
,
Kim
,
W.
,
Kwak
,
J. S.
, and
Park
,
J. S.
,
2019
, “
Heat Transfer Coefficient and Film Cooling Effectiveness on the Partial Cavity tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071007
.
25.
Park
,
J. S.
,
Lee
,
D. H.
,
Rhee
,
D.-H.
,
Kang
,
S. H.
, and
Cho
,
H. H.
,
2014
, “
Heat Transfer and Film Cooling Effectiveness on the Squealer Tip of a Turbine Blade
,”
Energy
,
72
, pp.
331
343
.
26.
Huang
,
T.
,
Li
,
H.
,
Su
,
X.
, and
Yuan
,
X.
,
2024
, “
Influence of Film Hole Arrangement on Cooling and Aerodynamic Performance of Blade Tip With Squealer Structure
,”
Int. J. Therm. Sci.
,
195
, p. 108636.
27.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
,
1992
, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
643
651
.
28.
Key
,
N. L.
, and
Arts
,
T.
,
2004
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.
29.
Christensen
,
L.
,
Celestina
,
R.
,
Sperling
,
S.
,
Mathison
,
R.
,
Aksoy
,
H.
,
Liu
,
J.
, and
Nickol
,
J.
,
2023
, “
Effect of Coolant Flowrate on High-Pressure Turbine Tip Flow Structures and Thermal Loading
,”
Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
,
Boston, MA
,
June 26–30
, Paper No. GT2023-104008, p.
V07AT12A020
.
30.
Christensen
,
L.
,
Celestina
,
R.
,
Sperling
,
S.
,
Mathison
,
R.
,
Aksoy
,
H.
,
Liu
,
J.
, and
Nickol
,
J.
,
2023
, “
Modeling Tip Flow Structures and Heat Transfer in Contemporary Cooled and Uncooled High-Pressure Turbine Blades
,”
Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
,
Boston, MA
,
June 26–30
, Paper No. GT2023-104002, p.
V07AT12A019
.
31.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2008
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.
32.
Wang
,
Z.
,
Zhang
,
Q.
,
Liu
,
Y.
, and
He
,
L.
,
2015
, “
Impact of Cooling Injection on the Transonic Over-Tip Leakage Flow and Squealer Aerothermal Design Optimization
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062603
.
33.
Li
,
C.
,
2023
, “
Aerothermal Performance Analysis and Knowledge Discovery of Film Holes on the Squealer Tip of a Gas Turbine Blade
,”
Int. J. Therm. Sci.
,
186
, p. 108114.
34.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.