Abstract

Modern radial compressors are designed to operate with high performance and a wide range of applications while minimizing their environmental impact. It is necessary to study the machine near the stability limit and gain a comprehensive understanding of the fluid dynamic mechanisms that trigger the instability in the system to extend the operating range at high efficiency. Machine learning aids in developing pattern identification models for detecting compressor instability. In a prior study, a two-stage radial compressor for refrigerant gas underwent extensive simulation, capturing unsteady RANS conditions and generating a substantial dataset of pressure signals from multiple probes. Selected signals, coupled with detailed computational fluid dynamics (CFD) post-processing, revealed fluid dynamic structures near surge conditions. This study utilizes all pressure signals to assess the stage's operational state (stable, transient, or unstable/surge). An additional goal is to develop an algorithm predicting flow patterns in different stage sections with minimal pressure signals at the rotor inlet. This is a preliminary step toward the development of a smart monitoring and diagnostic model for the compressor installed in a plant. The developed model consists of three submodels, trained with CFD results obtained from unsteady Reynolds averaged Navier–Stokes (URANS) simulations. The three submodels are a regression submodule, a classification submodule, and a forecasting algorithm. The regression submodule predicts diffuser static pressure fields, the classification submodule categorizes whether the compressor is in a critical condition or not, and the forecasting algorithm predicts the inducer pressure signals in the future impeller rotations according to the actual operation history. These sub-modules work together to forecast whether the compressor, according to the operation strategy, is going into instability conditions.

References

1.
Achouch
,
M.
,
Dimitrova
,
M.
,
Dhouib
,
R.
,
Ibrahim
,
H.
,
Adda
,
M.
,
Sattarpanah Karganroudi
,
S.
,
Ziane
,
K.
, and
Aminzadeh
,
A.
,
2023
, “
Predictive Maintenance and Fault Monitoring Enabled by Machine Learning: Experimental Analysis of a TA-48 Multistage Centrifugal Plant Compressor
,”
Appl. Sci.
,
13
(
3
), p.
1790
.
2.
Willems
,
F.
, and
Jager
,
B.
,
1999
, “
Modeling and Control of Compressor Flow Instabilities
,”
Control Syst.
,
19
(
5
), pp.
8
18
.
3.
Eveker
,
K. M.
, and
Nett
,
C. N.
,
1993
, “
Control of Compression System Surge and Rotating Stall: A Laboratory-Based ‘Hands-On’ Introduction
,”
1993 American Control Conference
,
San Francisco, CA
,
June 2–4
, pp.
1307
1311
.
4.
Cravero
,
C.
,
Marsano
,
D.
,
Sishtla
,
V.
,
Halbe
,
C.
, and
Cousins
,
W. T.
,
2023
, “
Numerical Investigations of Near Surge Operating Conditions in a Two-Stage Radial Compressor With Refrigerant Gas
,”
ASME J. Eng. Gas Turbines Power
,
146
(
2
), p.
21010
.
5.
Carretta
,
M.
,
Cravero
,
C.
, and
Marsano
,
D.
,
2017
, “
Numerical Prediction of Centrifugal Compressor Stability Limit
,”
Turbo Expo: Power for Land, Sea, and Air
,
Charlotte, NC
,
June 26–30
.
6.
Cravero
,
C.
, and
Marsano
,
D.
,
2020
, “
Criteria for the Stability Limit Prediction of High Speed Centrifugal Compressors With Vaneless Diffuser: Part I—Flow Structure Analysis
,”
Turbo Expo: Power for Land, Sea, and Air, Vol. 2E: Turbomachinery
,
Virtual, Online
,
Sept. 21–25
,
p. V02ET39A013
.
7.
Cravero
,
C.
, and
Marsano
,
D.
,
2020
, “
Criteria for the Stability Limit Prediction of High Speed Centrifugal Compressors With Vaneless Diffuser: Part II—The Development of Prediction Criteria
,”
Turbo Expo: Power for Land, Sea, and Air
,
Virtual, Online
,
Sept. 21–25
,
p. V02ET39A014
.
8.
Bardelli
,
M.
,
Cravero
,
C.
,
Marini
,
M.
,
Marsano
,
D.
, and
Milingi
,
O.
,
2019
, “
Numerical Investigation of Impeller-Vaned Diffuser Interaction in a Centrifugal Compressor
,”
Appl. Sci.
,
9
(
8
), p.
1619
.
9.
Cravero
,
C.
, and
Marsano
,
D.
,
2023
, “
A Comparison of Strategies to Extend the Operating Range of Radial Compressors for Turbocharging
,”
E3S Web Conf.
,
414
, p.
02011
.
10.
Patlovany
,
D.
, and
Focke
,
A. B.
,
1986
, “
Predictive Surge Control and Optimization for a Centrifugal Compressor
,”
ASME J. Turbomach.
,
108
(
1
), pp.
82
89
.
11.
Liu
,
A.
, and
Chen
,
E.
,
2013
, “
Methods of Surge Point Judgment for Compressor Experiments
,”
Exp. Therm. Fluid Sci.
,
51
, pp.
204
213
.
12.
Orkisz
,
M.
, and
Lipnicki
,
P.
,
2014
, “
Rotating Compressor Surge Detection Using Variable Speed Drive Signals
,”
2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014
,
Ischia, Italy
,
June 18–20
, pp.
455
460
.
13.
Willems
,
F. F.
, and
de Jager
,
B.
,
1998
, “
Active Compressor Surge Control Using a One-Sided Controlled Bleed/Recycle Valve
,”
Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No. 98CH36171)
,
Tampa, FL
,
Dec. 18
, Vol. 3, pp.
2546
2551
.
14.
Day Towler
,
M.
,
Allison
,
T.
,
Krueger
,
P.
, and
Wygant
,
K.
,
2018
, “
A Novel Approach to Surge Control: High-Frequency Pressure Variance as an Indicator of Impending Surge in Centrifugal Compressors
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
, Vol. 9,
Oslo
,
June 11–15
.
15.
Munari
,
E.
,
D'Elia
,
G.
,
Morini
,
M.
,
Mucchi
,
E.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2018
, “
Experimental Investigation of Vibrational and Acoustic Phenomena for Detecting the Stall and Surge of a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
92605
.
16.
Silvestri
,
P.
,
Reggio
,
F.
,
Niccolini Marmont Du Haut Champ
,
C. A.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2022
, “
Compressor Surge Precursors for a Turbocharger Coupled to a Pressure Vessel
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111014
.
17.
Niccolini Marmont Du Haut Champ
,
C. A.
,
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2020
, “
Signal Processing Techniques to Detect Centrifugal Compressors Instabilities in Large Volume Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121002
.
18.
Silvestri
,
P.
,
Niccolini Marmont Du Haut Champ
,
C. A.
,
Reggio
,
F.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2023
, “
Vibro-Acoustic Responses and Pressure Signal Analysis for Early Surge Detection in a Turbocharger Compressor
,”
ASME J. Eng. Gas Turbines Power
,
145
(
10
), p.
101012
.
19.
Day
,
I. J.
,
1994
, “
Axial Compressor Performance During Surge
,”
J. Propul. Power
,
10
(
3
), pp.
329
336
.
20.
McNulty
,
G.
,
2009
, “
A Study of Dynamic Compressor Surge Control Strategies for a Gas Turbine Engine
,” Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA.
21.
Yoon
,
S.
,
Lin
,
Z.
,
Jiang
,
W.
, and
Allaire
,
P.
,
2012
, “
Flow-Rate Observers in the Suppression of Compressor Surge Using Active Magnetic Bearings
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Vols. 8: Turbomachinery; Parts A, B and C
,
Copenhagen, Denmark
,
June 11–15
, pp.
881
890
.
22.
Gruner
,
T.
, and
Bakken
,
L.
,
2012
, “
Instability Characteristic of a Single-Stage Centrifugal Compressor Exposed to Dry and Wet Gas
,”
Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Vols. 8: Turbomachinery, Parts A, B and C
,
Copenhagen
,
June 11–15
, pp.
2775
2287
.
23.
Wu
,
X.
, and
Li
,
Y.
,
2007
, “
Computationally Efficient Data-Driven Surge Map Modeling for Centrifugal Air Compressors
,”
2007 American Control Conference
,
New York
,
July 9–13
, pp.
810
815
.
24.
Zhang
,
Y.
,
Zheng
,
S.
,
Chen
,
Q.
, and
Fang
,
J.
,
2017
, “
Surge Detection Approach for Magnetically Suspended Centrifugal Compressors Using Adaptive Frequency Estimator
,”
IEEE Trans. Ind. Electron.
,
65
(
7
), pp.
5733
5742
.
25.
Potočnik
,
P.
, and
Govekar
,
E.
,
2017
, “
Semi-supervised Vibration-Based Classification and Condition Monitoring of Compressors
,”
Mech. Syst. Signal Process
,
93
, pp.
51
65
.
26.
Divya
,
M. N.
,
Narayanappa
,
C. K.
, and
Gangadharaiah
,
S. L.
,
2021
, “
Modeling a Fault Detection Predictor in Compressor Using Machine Learning Approach Based on Acoustic Sensor Data
,”
Int. J. Adv. Comput. Sci. Appl.
,
12
(
9
), pp.
1
19
.
27.
Carpenter
,
C.
,
2018
, “
Predictive-Maintenance Approach Uses Machine Learning to Increase Efficiency
,”
J. Pet. Technol.
,
70
(
12
), pp.
55
56
.
28.
Mutlag
,
W.
,
Ali
,
S.
,
Mosad
,
Z.
, and
Ghrabat
,
B. H.
,
2020
, “
Feature Extraction Methods: A Review
,”
J. Phys. Conf. Ser.
,
1591
(
1
), p.
12028
.
29.
Kim
,
S.-I.
,
Noh
,
Y.
,
Kang
,
Y.-J.
,
Park
,
S.
, and
Ahn
,
B.
,
2021
, “
Fault Classification Model Based on Time Domain Feature Extraction of Vibration Data
,”
J. Comput. Struct. Eng. Inst. Korea
,
34
(
1
), pp.
25
33
.
30.
van
,
B.
,
Nguyen
,
V.
,
Nguyen
,
H.
, and
Jang
,
Y. M.
,
2020
, “
Statistical Feature Extraction in Machine Fault Detection Using Vibration Signal
,”
2020 International Conference on Information and Communication Technology Convergence (ICTC)
,
Jeju, South Korea
,
Oct. 21–23
, IEEE, pp.
666
669
.
31.
Prasad
,
J.
,
Neumeier
,
Y.
, and
Krichene
,
A.
,
2001
, “
Active Control of Compressor Surge Using a Real Time Observer
,”
Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles
,
1
, p.
10
.
32.
Shen
,
Y.
, and
Khorasani
,
K.
,
2020
, “
Hybrid Multi-mode Machine Learning-Based Fault Diagnosis Strategies With Application to Aircraft Gas Turbine Engines
,”
Neural Netw.
,
130
, pp.
126
142
.
33.
Helvoirt
,
J.
,
Jager
,
B.
,
Steinbuch
,
M.
, and
Smeulers
,
J.
,
2006
, “
Practical Issues inModel-Based Surge Control for Centrifugal Compressors
,”
Proceedings of the 9th European Fluid Machinery Congress
,
Hague, Netherlands
,
Apr. 23-26
,
pp. 285-295
.
34.
Seid
,
S.
,
2019
, “
Road Accident Data Analysis: Data Preprocessing for Better Model Building
,”
J. Comput. Theor. Nanosci.
,
16
(
9
), pp.
4019
4027
.
35.
Kotsiantis
,
S.
,
Kanellopoulos
,
D.
, and
Pintelas
,
P.
,
2006
, “
Data Preprocessing for Supervised Learning
,”
Int. J. Comput. Sci.
,
1
(
2
), pp.
111
117
.
36.
Kosowski
,
K.
,
Tucki
,
K.
, and
Kosowski
,
A.
,
2010
, “
Application of Artificial Neural Networks in Investigations of Steam Turbine Cascades
,”
ASME J. Turbomach.
,
132
(
1
), p.
014501
.
37.
Aggarwal
,
C. C.
,
2018
,
Neural Networks and Deep Learning
,
Springer
,
New York
.
38.
Ng
,
A.
,
2023
, “Deep Learning Specialization,” Deep Learning. AI, https://www.deeplearning.ai/courses/deep-learning-specialization/
39.
Lin
,
Y.
,
Koprinska
,
I.
, and
Rana
,
M.
,
2021
, “
Temporal Convolutional Attention Neural Networks for Time Series Forecasting
,”
2021 International Joint Conference on Neural Networks (IJCNN)
,
Shenzhen, China
,
July 18–22
, pp.
1
8
.
40.
Cravero
,
C.
,
Philippe Joe
,
L.
, and
Marsano
,
D.
,
2022
, “
Simulation and Modeling of Ported Shroud Effects on Radial Compressor Stage Stability Limits
,”
Energies
,
15
(
7
), p.
2571
.
You do not currently have access to this content.