Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The non-synchronous blade vibration induced by a rotating aerodynamic disturbance is encountered for the fan of a turbofan engine working at 65% speedline. To analyze the unsteady characteristics, two methods based on the phase analysis and the compressive sensing (CS) for spatially-undersampled data are proposed and applied to obtain the circumferential mode order of the aerodynamic disturbance, and their performance has been carefully examined at various parameters. It was shown that when there are sufficient probes, i.e., 7–8 in the present study, both the two methods can give a correct prediction to the dominant mode order (the highest is 26 in this work) for all non-engine-order (EO) frequencies. However, if less probes are used, the deterioration of accuracy can be observed for both the two methods and a better performance can be observed for the CS method. In order to suppress the blade vibration, the fan blade is trimmed to alter its solid eigenfrequencies and avoid the resonance, which is proved to be an effective anti-vibration design. The existence of the aerodynamic disturbance after the blade is trimmed also suggests that the vibration is not self-excited but induced by the resonance of the flow excitation and the structure. For the cases with and without vibration, the origin of these non-EO frequencies can be well explained by the spinning mode theory and the interaction between the blade vibration and a high-order blade passing frequency has been observed in this study.

References

1.
Baumgartner
,
M.
,
Kameier
,
F.
, and
Hourmouziadis
,
J.
,
1995
, “
Non-Engine Order Blade Vibration in a High Pressure Compressor
,”
Twelfth International Symposium on Airbreathing Engines
,
Melbourne, Australia
,
Sept. 10–15
.
2.
Kielb
,
R. E.
,
Barter
,
J. W.
,
Thomas
,
J. P.
, and
Hall
,
K. C.
,
2003
, “
Blade Excitation by Aerodynamic Instabilities: A Compressor Blade Study
,”
Proceedings of ASME Turbo Expo
,
Atlanta, GA
,
June 16–19
.
3.
Holzinger
,
F.
,
Wartzek
,
F.
,
Jüngst
,
M.
,
Schiffer
,
H.-P.
, and
Leichtfuss
,
S.
,
2016
, “
Self-Excited Blade Vibration Experimentally Investigated in Transonic Compressors: Rotating Instabilities and Flutter
,”
ASME J. Turbomach.
,
138
(
4
), p.
041006
.
4.
Vahdati
,
M.
, and
Cumpsty
,
N.
,
2016
, “
Aeroelastic Instability in Transonic Fans
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022604
.
5.
Brandstetter
,
C.
,
Jüngst
,
M.
, and
Schiffer
,
H.-P.
,
2018
, “
Measurements of Radial Vortices, Spill Forward, and Vortex Breakdown in a Transonic Compressor
,”
ASME J. Turbomach.
,
140
(
6
), p.
061004
.
6.
Brandstetter
,
C.
,
Ottavy
,
X.
,
Paoletti
,
B.
, and
Stapelfeldt
,
S.
,
2021
, “
Interpretation of Stall Precursor Signatures
,”
ASME J. Turbomach.
,
143
(
12
), p.
121011
.
7.
Rodrigues
,
M.
,
Soulat
,
L.
,
Paoletti
,
B.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2021
, “
Aerodynamic Investigation of a Composite Low-Speed Fan for UHBR Application
,”
ASME J. Turbomach.
,
143
(
10
), p.
101004
.
8.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
5
), pp.
833
853
.
9.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
10.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
11.
Pardowitz
,
B.
,
Tapken
,
U.
,
Neuhaus
,
L.
, and
Enghardt
,
L.
,
2015
, “
Experiments on an Axial Fan Stage: Time-Resolved Analysis of Rotating Instability Modes
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062505
.
12.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Experimental Study of Tip Clearance Losses and Noise in Axial Turbomachines and Their Reduction
,”
ASME J. Turbomach.
,
119
(
3
), pp.
460
471
.
13.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
14.
Pardowitz
,
B.
,
Tapken
,
U.
,
Sorge
,
R.
,
Thamsen
,
P. U.
, and
Enghardt
,
L.
,
2014
, “
Rotating Instability in an Annular Cascade: Detailed Analysis of the Instationary Flow Phenomena
,”
ASME J. Turbomach.
,
136
(
6
), p.
061017
.
15.
Pardowitz
,
B.
,
Moreau
,
A.
,
Tapken
,
U.
, and
Enghardt
,
L.
,
2015
, “
Experimental Identification of Rotating Instability of an Axial Fan With Shrouded Rotor
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
229
(
5
), pp.
520
528
.
16.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.
17.
Garnier
,
V. H.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
,
1991
, “
Rotating Waves as a Stall Inception Indication in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
290
301
.
18.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.
19.
Holzinger
,
F.
,
Wartzek
,
F.
,
Schiffer
,
H.-P.
,
Leichtfuss
,
S.
, and
Nestle
,
M.
,
2016
, “
Self-Excited Blade Vibration Experimentally Investigated in Transonic Compressors: Acoustic Resonance
,”
ASME J. Turbomach.
,
138
(
4
), p.
041001
.
20.
Brandstetter
,
C.
,
Paoletti
,
B.
, and
Ottavy
,
X.
,
2019
, “
Compressible Modal Instability Onset in an Aerodynamically Mistuned Transonic Fan
,”
ASME J. Turbomach.
,
141
(
3
), p.
031004
.
21.
Fiquet
,
A.-L.
,
Aubert
,
S.
,
Brandstetter
,
C.
,
Buffaz
,
N.
, and
Vercoutter
,
A.
,
2021
, “
Acoustic Resonance in an Axial Multistage Compressor Leading to Non-Synchronous Blade Vibration
,”
ASME J. Turbomach.
,
143
(
9
), p.
091014
.
22.
Candes
,
E.
,
Romberg
,
J.
, and
Tao
,
T.
,
2006
, “
Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency Information
,”
IEEE Trans. Inf. Theory
,
52
(
2
), pp.
489
509
.
23.
Candes
,
E. J.
, and
Tao
,
T.
,
2006
, “
Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
IEEE Trans. Inf. Theory
,
52
(
12
), pp.
5406
5425
.
24.
Donoho
,
D.
,
2006
, “
Compressed Sensing
,”
IEEE Trans. Inf. Theory
,
52
(
4
), pp.
1289
1306
.
25.
Huang
,
X.
,
2013
, “
Compressive Sensing and Reconstruction in Measurements With an Aerospace Application
,”
AIAA J.
,
51
(
4
), pp.
1011
1016
.
26.
Yu
,
W.
, and
Huang
,
X.
,
2016
, “
Compressive Sensing Based Spinning Mode Detections by In-Duct Microphone Arrays
,”
Meas. Sci. Technol.
,
27
(
5
), p.
055901
.
27.
Yu
,
W.
,
Ma
,
Z.
,
Lau
,
A. S. H.
, and
Huang
,
X.
,
2018
, “
Analysis and Experiment of the Compressive Sensing Approach for Duct Mode Detection
,”
AIAA J.
,
56
(
2
), pp.
648
657
.
28.
Terstegen
,
M.
,
Sanders
,
C.
,
Jeschke
,
P.
, and
Schoenenborn
,
H.
,
2019
, “
Rotor–Stator Interactions in a 2.5-Stage Axial Compressor–Part I: Experimental Analysis of Tyler–Sofrin Modes
,”
ASME J. Turbomach.
,
141
(
10
), p.
101002
.
29.
Faßbender
,
A.
,
Enneking
,
M.
, and
Jeschke
,
P.
,
2020
, “
Rotor-Alone Tones in the Outflow Noise of a Centrifugal Compressor
,”
ASME J. Turbomach.
,
142
(
11
), p.
111001
.
30.
Yang
,
Z.
,
Wu
,
Y.
, and
Ouyang
,
H.
,
2022
, “
Investigation on Mode Characteristics of Rotating Instability and Rotating Stall in an Axial Compressor
,”
ASME J. Turbomach.
,
144
(
6
), p.
061010
.
31.
Tian
,
J.
,
Sun
,
Z.
,
Zhang
,
X.
, and
Ouyang
,
H.
,
2021
, “
Azimuthal Mode Characteristics of Rotating Instability in Axial Compressor Using Compressed Sensing Method
,”
ASME J. Turbomach.
,
143
(
6
), p.
061004
.
32.
Li
,
F.
,
Li
,
J.
,
Dong
,
X.
,
Zhou
,
Y.
,
Sun
,
D.
, and
Sun
,
X.
,
2016
, “
Stall-Warning Approach Based on Aeroacoustic Principle
,”
J. Propul. Power
,
32
(
6
), pp.
1353
1364
.
33.
Sun
,
D.
,
Xu
,
R.
,
Dong
,
X.
,
Li
,
J.
, and
Sun
,
X.
,
2024
, “
Aeroengine Stall Warning by Multicorrelation Analysis
,”
J. Propul. Power
,
40
(
1
), pp.
138
151
.
34.
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2019
, “
Improving the Flutter Margin of an Unstable Fan Blade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071006
.
35.
Stapelfeldt
,
S.
, and
Brandstetter
,
C.
,
2022
, “
Suppression of Nonsynchronous Vibration Through Intentional Aerodynamic and Structural Mistuning
,”
ASME J. Turbomach.
,
144
(
2
), p.
021008
.
36.
Sun
,
Y.
,
Wang
,
X.
,
Du
,
L.
, and
Sun
,
X.
,
2020
, “
On the Role of Acoustic Reflections From Duct Boundaries in Fan Flutter
,”
J. Sound Vib.
,
483
, p.
115465
.
37.
Sun
,
Y.
,
Wang
,
X.
,
Du
,
L.
, and
Sun
,
X.
,
2020
, “
Effect of Acoustic Treatment on Fan Flutter Stability
,”
J. Fluid. Struct.
,
93
(
Feb.
), p.
102877
.
38.
Sun
,
Y.
,
Wang
,
X.
,
Du
,
L.
, and
Sun
,
X.
,
2022
, “
On the Flow-Acoustic Coupling of Fan Blades With Over-the-Rotor Liner
,”
J. Fluid. Mech.
,
941
, p.
A67
.
39.
Taylor
,
J.
, and
Sofrin
,
T.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
,
70
(
1
), pp.
309
332
.
You do not currently have access to this content.