Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

To enhance turbine efficiency, it is essential to mitigate the loss generated by irreversible phenomena taking place in turbine flows, including boundary layers, shock waves, vortices, and trailing edge wakes. A fast and accurate detection of losses is therefore crucial from the earliest stages of turbine design, in which reduced order models based on oversimplified correlations are employed. Achieving this objective requires a deep comprehension of the physics behind each loss-generating mechanism, a goal attainable through the examination of the 3D flow. While existing criteria allow the identification of various phenomena, accurately quantifying losses generated by vortices remains a challenge: these losses frequently extend beyond the vortical structure. The aim of this paper is to provide a straightforward and effective approach to localize and assess vortex-related losses. This method is grounded in Zlatinov’s decomposition of the entropy generation rate equation into a streamwise and a secondary flow component. A criterion based on the vortex kinematics is used to evaluate the strength of the vortex, thereby enabling the determination of its spatial influence and its contribution to the overall losses. To validate the method, a post-processing code is developed which allows to perform loss breakdown. This tool makes use of existing identification criteria and some new techniques introduced within this work, especially for wake detection. 3D Reynolds-averaged Navier–Stokes simulations are carried out on several configurations, ranging from simple curved ducts to more realistic nozzle guide vanes, to gradually test and validate the computational tool. Results confirm that the highest rates of entropy generation occur outside of the vortical structure, and show good ability to identify both the vortex shape and its area of influence in terms of losses. A drastic improvement in the prediction of vortex losses is especially observed in the case of turbine blades with tip or hub leakage vortices.

References

1.
Dahlquist
,
A. N.
,
2008
, “Investigation of Losses Prediction Methods in 1D for Axial Gas Turbines”.
2.
Wei
,
N.
,
2000
, “
Significance of Loss Models in Aerothermodynamic Simulation for Axial Turbines
,” PhD thesis,
Royal Institute of Technology
,
Stockholm, Sweden
.
3.
Soderberg
,
C. R.
, “
Unpublished Notes
,” Gas Turbine Laboratory, Massachusetts Institute of Technology.
4.
Ainley
,
D. G.
, and
Mathieson
,
G. C. R.
,
1951
, “
A Method of Performance Estimation for Axial-Flow Turbines
,” Tech. rep., Reports and memoranda, Aeronautical Research Council, Great Britain.
5.
Dunham
,
J.
, and
Came
,
P. M.
,
1970
, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
J. Eng. Power
,
92
(
3
), pp.
252
256
.
6.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Power
,
104
(
1
), pp.
111
119
.
7.
Moustapha
,
S. H.
,
Kacker
,
S. C.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
(
2
), pp.
267
276
.
8.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2006
, “
An Empirical Prediction Method For Secondary Losses In Turbines - Part I: A New Loss Breakdown Scheme and Penetration Depth Correlation
,”
ASME J. Turbomach.
,
128
(
2
), pp.
273
280
.
9.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2006
, “
An Empirical Prediction Method For Secondary Losses In Turbines – Part II: A New Secondary Loss Correlation
,”
ASME J. Turbomach.
,
128
(
2
), pp.
281
291
.
10.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
11.
Pullan
,
G.
,
Denton
,
J. D.
, and
Curtis
,
E.
,
2006
, “
Improving the Performance of a Turbine With Low Aspect Ratio Stators by Aft-Loading
,”
ASME J. Turbomach.
,
128
(
3
), pp.
492
499
.
12.
Saito
,
S.
,
Furukawa
,
M.
,
Yamada
,
K.
,
Watanabe
,
K.
,
Matsuoka
,
A.
, and
Niwa
,
N.
,
2019
, “
Mechanisms and Quantitative Evaluation of Flow Loss Generation in a Multi-Stage Transonic Axial Compressor
,” ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition,
American Society of Mechanical Engineers
.
13.
Moore
,
J.
, and
Moore
,
J. G.
,
1983
, “
Entropy Production Rates From Viscous Flow Calculations. Part I – A Turbulent Boundary Layer Flow
,” ASME Gas Turbine Conference,
American Society of Mechanical Engineers
.
14.
Yoon
,
S.
,
Vandeputt
,
T.
,
Mistry
,
H.
,
Ong
,
J.
, and
Stein
,
A.
,
2016
, “
Loss Audit of a Turbine Stage
,”
ASME J. Turbomach.
,
138
(
5
), p.
051004
.
15.
Fiore
,
M.
,
2019
, “
Influence of Cavity Flow on Turbine Aerodynamics
,” PhD thesis,
ISAE Supaero
,
Toulouse, France
.
16.
Roth
,
M.
,
2000
, “
Automatic Extraction of Vortex Core Lines and Other Line-type Features for Scientific Visualization
,” PhD thesis,
Federal Institute of Technology
,
Zurich, Switzerland
.
17.
Holmén
,
V.
,
2012
, “
Methods for Vortex Identification
”.
18.
Kolár
,
V.
,
2007
, “
Vortex Identification: New Requirements and Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
638
652
.
19.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Center for Turbulence Research, Proceedings of the Summer Program 1988, pp.
193
208
.
20.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
,
1990
, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids. A.
,
2
(
5
), pp.
765
777
.
21.
Dallmann
,
U.
,
1983
, “
Topological Structures of Three-Dimensional Vortex Flow Separation
,”
16th Fluid and Plasmadynamics Conference
,
American Institute of Aeronautics and Astronautics
.
22.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid. Mech.
,
285
, pp.
69
94
.
23.
Pátý
,
M.
, and
Lavagnoli
,
S.
,
2020
, “
A Novel Vortex Identification Technique Applied to the 3D Flow Field of a High-Pressure Turbine
,”
ASME J. Turbomach.
,
142
(
3
), p.
031004
.
24.
Zabusky
,
N.
,
Boratav
,
O. N.
,
Pelz
,
R. B.
,
Gao
,
M.
,
Silver
,
D.
, and
Cooper
,
S. P.
,
1991
, “
Emergence of Coherent Patterns of Vortex Stretching During Reconnection: A Scattering Paradigm
,”
Phys. Rev. Lett.
,
67
(
18
), pp.
2469
2472
.
25.
Ducci
,
A.
, and
Yianneskis
,
M.
,
2007
, “
Vortex Identification Methodology for Feed Insertion Guidance in Fluid Mixing Processes
,”
Chem. Eng. Res. Des.
,
85
(
5
), pp.
543
550
.
26.
Strawn
,
R. C.
,
Kenwright
,
D. N.
, and
Ahmad
,
J.
,
1999
, “
Computer Visualization of Vortex Wake Systems
,”
AIAA. J.
,
37
(
4
), pp.
511
512
.
27.
Zhang
,
S.
, and
Choudhury
,
D.
,
2006
, “
Eigen Helicity Density: A New Vortex Identification Scheme and Its Application in Accelerated Inhomogeneous Flows
,”
Phys. Fluids.
,
18
(
5
), p.
058104
.
28.
Globus
,
A.
,
Levit
,
C.
, and
Lasinski
,
T.
,
1991
, “
A Tool for Visualizing the Topology of Three-Dimensional Vector Fields
,”
2nd IEEE Conference on Visualization
,
San Diego, CA
, pp.
33
40
.
29.
Wu
,
Z.
,
Xu
,
Y.
,
Wang
,
W.
, and
Hu
,
R.
,
2013
, “
Review of Shock Wave Detection Method in CFD Post-Processing
,”
Chinese J. Aeronaut.
,
26
(
3
), pp.
501
513
.
30.
Pagendarm
,
H.
, and
Seitz
,
B.
,
1993
,
Scientific Visualization: Advanced Software Techniques (Ellis Horwood Workshop)
,
P. Palamidese (ed.)
, pp.
161
177
.
31.
Lovely
,
D.
, and
Haimes
,
R.
,
1999
, “
Shock Detection From Computational Fluid Dynamics Results
,” 14th Computational Fluid Dynamics Conference,
American Institute of Aeronautics and Astronautics
.
32.
Kanamori
,
M.
, and
Suzuki
,
K.
,
2011
, “
Shock Wave Detection Based on the Theory of Characteristics for CFD Results
,”
AIAA Computational Fluid Dynamics Conference
,
Honolulu, HI
.
33.
Laskowski
,
G.
, and
Felten
,
F.
,
2010
, “
Steady and Unsteady CFD Simulations of Transonic Turbine Vane Wakes with Trailing Edge Cooling
,”
5th European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010
,
Lisbon, Portugal
.
34.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
.
35.
Hermet
,
F.
,
Binder
,
N.
, and
Gressier
,
J.
,
2019
, “
Transient Flow in Infinitely Thin Airfoil Cascade
,”
13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics ETC13
,
Lausanne, Switzerland
.
36.
Wingel
,
C.
,
Binder
,
N.
,
Bousquet
,
Y.
,
Boussuge
,
J.F.
,
Buffaz
,
N.
, and
Le Guyader
,
S.
,
2022
, “
Influence of RANS Turbulent Inlet Set-Up on the Swirled Hot Streak Redistribution in a Simplified Nozzle Guide Vane Passage: Comparisons With Large-Eddy Simulations
,”
ASME Turbo Expo 2022. Turbomachinery Technical Conference and Exposition
,
Rotterdam, The Netherlands
.
37.
Cambier
,
L.
,
Heib
,
S.
, and
Plot
,
S.
,
2013
, “
The Onera ElsA CFD Software: Input From Research and Feedback From Industry
,”
Mech. Indust.
,
14
(
3
), pp.
159
174
.
38.
Crevel
,
F.
,
Gourdain
,
N.
, and
Ottavy
,
X.
,
2014
, “
Numerical Simulation of Aerodynamic Instabilities in a Multistage High-Speed High-Pressure Compressor on Its Test Rig – Part II: Deep Surge
,”
ASME J. Turbomach.
,
136
(
10
), p.
101004
.
39.
Schreiber
,
J.
,
Paoletti
,
B.
, and
Ottavy
,
X.
,
2017
, “
Observations on Rotating Instabilities and Spike Type Stall Inception in a High-Speed Multistage Compressor
,”
Int. J. Rotating Mach.
,
2017
(
1
), pp.
1
11
.
40.
Wingel
,
C.
,
2023
, “
Investigation of RANS Approach for the Prediction of Cooled Turbine Stage Flows Submitted to Swirled Hot Streaks
,” PhD thesis,
ISAE Supaero
,
Toulouse, France
.
41.
Jameson
,
A.
, and
Seokkwan
,
Y.
,
1987
, “
Lower-Upper Implicit Schemes with Multiple Grids for the Euler Equations
,”
AIAA. J.
,
25
(
7
), pp.
929
935
.
42.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA. J.
,
26
(
11
), pp.
1299
1310
.
43.
Vatistas
,
G. H.
,
Kozel
,
V.
, and
Mih
,
W. C.
,
1991
, “
A Simpler Model for Concentrated Vortices
,”
Exp. Fluids
,
11
(
1
), pp.
73
76
.
44.
Cliquet
,
J.
,
Houdeville
,
R.
, and
Arnal
,
D.
,
2008
, “
Application of Laminar-Turbulent Transition Criteria in Navier-Stokes Computations
,”
AIAA. J.
,
46
(
5
), pp.
1182
1190
.
You do not currently have access to this content.