Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this paper, the gas–liquid two-phase flow in a multi-stage transonic compressor is numerically simulated based on the Euler–Lagrange method. The changes in wet compression aerodynamic characteristics of the compressor are investigated under various spraying conditions (droplet sizes and spraying rates). The results indicate that the compressor choking boundary moves to a smaller flowrate after spraying. Wet compression improves the efficiency of the compressor. The evaporation cooling effect of wet compression decreases the total temperature ratio and augments the specific power, resulting in an enhanced total pressure ratio. After the water droplets are injected into the compressor, due to the small rise of the airflow temperature in the upstream area, the evaporation cooling effect of droplets is weak. The negative effects of droplets lead to a reduction in the total pressure ratio of the first-stage compressor. As water droplets move downstream, the gradual increase in airflow temperature enhances the evaporation cooling effect, thereby improving the compressor performance. Water droplets migrate radially inside the compressor and gather toward the blade tip area, causing the gas phase mass flow inside the compressor to be redistributed in the radial direction. Wet compression enhances the capability of the rotor blades to perform work and airflow, leading to an increase in the airflow twist velocity.

References

1.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T.
,
2004
, “
Inlet Fogging of Gas Turbine Engines—Part I: Fog Droplet Thermodynamics, Heat Transfer, and Practical Considerations
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
545
558
.
2.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T.
,
2004
, “
Inlet Fogging of Gas Turbine Engines—Part II: Fog Droplet Sizing Analysis, Nozzle Types, Measurement, and Testing
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
559
570
.
3.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T.
,
2024
, “
Inlet Fogging of Gas Turbine Engines—Part III: Fog Behavior in Inlet Ducts, Computational Fluid Dynamics Analysis, and Wind Tunnel Experiments
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
571
580
.
4.
Zheng
,
Q.
,
Sun
,
Y.
,
Li
,
S.
, and
Wang
,
Y.
,
2003
, “
Thermodynamic Analyses of Wet Compression Process in the Compressor of Gas Turbine
,”
ASME J. Turbomach.
,
125
(
3
), pp.
489
496
.
5.
Hill
,
P. G.
,
1963
, “
Aerodynamic and Thermodynamic Effects of Coolant Injection on Axial Compressors
,”
Aeronaut. Q.
,
14
(
4
), pp.
331
348
.
6.
Young
,
J. B.
,
1995
, “
The Fundamental Equations of Gas-Droplet Multiphase Flow
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
175
191
.
7.
Wang
,
T.
, and
Khan
,
J. R.
,
2010
, “
Overspray and Interstage Fog Cooling in Gas Turbine Compressor Using Stage-Stacking Scheme Part I: Development of Theory and Algorithm
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
3
), p.
031001
.
8.
Wang
,
T.
, and
Khan
,
J. R.
,
2010
, “
Overspray and Interstage Fog Cooling in Gas Turbine Compressor Using Stage-Stacking Scheme Part II: Case Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
3
), p.
031002
.
9.
Khan
,
J. R.
, and
Wang
,
T.
,
2013
, “
Implementation of a Non-Equilibrium Heat Transfer Model in Stage-Stacking Scheme to Investigate Overspray Fog Cooling in Compressors
,”
Int. J. Therm. Sci.
,
68
, pp.
63
78
.
10.
Kim
,
K. H.
,
Kim
,
D.
, and
Kim
,
K.
,
2013
, “
After Fogging Process in Water Injected Gas Turbine Systems
,”
Heat Mass Transfer
,
49
(
12
), pp.
1813
1822
.
11.
Sun
,
J.
,
Zuo
,
Z.
,
Liang
,
Q.
,
Zhang
,
X.
,
Guo
,
H.
, and
Chen
,
H.
,
2022
, “
Theoretical and Experimental Study on Effects of Wet Compression on Centrifugal Compressor Performance
,”
Appl. Therm. Eng.
,
2022
(
212
), p.
118163
.
12.
Sun
,
L.
,
Zheng
,
Q.
,
Li
,
Y.
, and
Bhargava
,
R.
,
2011
, “
Understanding Effects of Wet Compression on Separated Flow Behavior in an Axial Compressor Stage Using CFD Analysis
,”
ASME J. Turbomach.
,
133
(
3
), p.
031026
.
13.
Sun
,
L.
,
Zheng
,
Q.
,
Luo
,
M.
,
Li
,
Y.
, and
Bhargava
,
R.
,
2011
, “
On the Behavior of Water Droplets When Moving Onto Blade Surface in a Wet Compression Transonic Compressor
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
082001
.
14.
Sun
,
L.
,
Zheng
,
Q.
,
Li
,
Y.
,
Luo
,
M.
, and
Bhargava
,
R.
,
2013
, “
Numerical Simulation of a Complete Gas Turbine Engine With Wet Compression
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012002
.
15.
Luo
,
M.
,
Zheng
,
Q.
,
Sun
,
L.
,
Deng
,
Q.
,
Chen
,
J.
,
Wang
,
J.
, and
Bhargava
,
R.
,
2012
, “
The Effects of Wet Compression and Blade Tip Water Injection on the Stability of a Transonic Compressor Rotor
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092001
.
16.
Luo
,
M.
,
Zheng
,
Q.
,
Sun
,
L.
,
Deng
,
Q.
, and
Yang
,
J.
,
2014
, “
The Effect of Wet Compression on a Multistage Subsonic Compressor
,”
ASME J. Turbomach.
,
136
(
3
), p.
031016
.
17.
Yang
,
L.
,
Zhang
,
H.
, and
Lin
,
A.
,
2019
, “
Effects of Water Ingestion on the Tip Clearance Flow in Compressor Rotors
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
233
(
11
), pp.
4235
4246
.
18.
Wang
,
H.
,
Zhu
,
Z.
, and
Wang
,
Y.
,
2022
, “
Influence of Wet Compression on Aerodynamic Performance and Stability Boundary of Transonic Compressor
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
236
(
4
), pp.
621
633
.
19.
Ming
,
L.
,
Wu
,
Y.
,
Yang
,
Z.
, and
Ouyang
,
H.
,
2022
, “
Numerical Study on the Influence of Mist-Air Mixtures on Axial Compressor Performance
,”
Aerosp. Sci. Technol.
,
123
, p.
107505
.
20.
Wu
,
Y.
,
Yang
,
Z.
,
Sun
,
C.
, and
Ouyang
,
H.
,
2019
, “
Compressor Rig Test Facility in Shanghai Jiao Tong University
,”
Proceedings of the Global Power and Propulsion Society
,
Beijing, China
,
Sept. 16–18
.
21.
Lin
,
A. Q.
,
Zheng
,
Q.
,
Fawzy
,
H.
,
Luo
,
M. C.
,
Zhou
,
J.
, and
Zhang
,
H.
,
2019
, “
Effect of Water Injection Cooling on Flow Field Characteristics in the Cooling Section of Precooled Turbine-Based Combined Cycle Engine
,”
Int. J. Heat Mass Transfer
,
141
, pp.
615
626
.
You do not currently have access to this content.