Abstract

A reservoir-geomechanics coupled simulation tool is required in the interpretation and prediction of stimulation and production performance of unconventional reservoirs in a physically rigorous manner. One such a coupled simulation tool developed at Lawrence Berkeley National Laboratory (LBNL), TOUGH2-FLAC3D, has been extensively adopted in many scientific research and practical application projects in last two decades. In TOUGH2's most often used equation of state (EOS), EOS4, the vapor pressure is used as a primary variable, however, the vapor pressure lowering effect is not the primary interest in a typical reservoir flow simulation. Instead, the temperature should be a natural and physically correct primary variable, considering the convenience of model input, and the understanding and interpretation of simulation results. In this work, the vapor pressure is replaced by temperature in the EOS implementation. To be consistent with the change of primary variable, the Jacobian matrix is modified correspondingly and illustrated using a case of two-phase flow in one grid block. The development work was verified in three well-defined problems that are related to fluid diffusion, thermal conduction, thermal fluid conduction and convection, respectively, through comparing the modeling results with the corresponding analytical solutions.

References

1.
Jha
,
B.
, and
Juanes
,
R.
,
2007
, “
A Locally Conservative Finite Element Framework for the Simulation of Coupled Flow and Reservoir Geomechanics
,”
Acta Geotech.
,
2
(
3
), pp.
139
153
.10.1007/s11440-007-0033-0
2.
An
,
C.
,
Alfi
,
M.
,
Yan
,
B.
, and
Killough
,
J. E.
,
2016
, “
A New Study of Magnetic Nanoparticle Transport and Quantifying Magnetization Analysis in Fractured Shale Reservoir Using Numerical Modeling
,”
J. Nat. Gas Sci. Eng.
, 28, pp.
502
521
.10.1016/j.jngse.2015.11.052
3.
Guo
,
X. Y.
,
Wu
,
K.
,
An
,
C.
,
Tang
,
J. Z.
, and
Killough
,
J.
,
2019
, “
Numerical Investigation of Effects of Subsequent Parent-Well Injection on Interwell Fracturing Interference Using Reservoir-Geomechanics-Fracturing Modeling
,”
SPE J.
,
24
(
4
), pp.
1884
1902
.10.2118/195580-PA
4.
Minkoff
,
S. E.
,
Stone
,
C. M.
,
Bryant
,
S.
,
Peszynska
,
M.
, and
Wheeler
,
M. F.
,
2003
, “
Coupled Fluid Flow and Geomechanical Deformation Modeling
,”
J. Pet. Sci. Eng.
,
38
(
1–2
), pp.
37
56
.10.1016/S0920-4105(03)00021-4
5.
Kim
,
J.
,
2010
, “
Sequential Methods for Coupled Geomechanics and Multiphase Flow
,”
Ph.D. thesis
,
Department of Energy Resources Engineering, Stanford University
, Stanford, CA, p.
264
.https://pangea.stanford.edu/ERE/pdf/pereports/PhD/Kim10.pdf
6.
An
,
C.
,
Fang
,
Y.
,
Liu
,
S.
,
Alfi
,
M.
,
Yan
,
B.
,
Wang
,
Y.
, and
Killough
,
J.
,
2017
, “
Impacts of Matrix Shrinkage and Stress Changes on Permeability and Gas Production of Organic-Rich Shale Reservoirs
,” SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, UAE, May, Paper No.
SPE-186029-MS
.https://doi.org/10.2118/186029-MS
7.
An
,
C.
,
Killough
,
J.
, and
Mi
,
L.
,
2019
, “
Stress-Dependent Permeability of Organic-Rich Shale Reservoirs: Impacts of Stress Changes and Matrix Shrinkage
,”
J. Pet. Sci. Eng.
,
172
, pp.
1034
1047
.10.1016/j.petrol.2018.09.011
8.
Kim
,
J.
,
Tchelepi
,
H. A.
, and
Juanes
,
R.
,
2011
, “
Stability and Convergence of Sequential Methods for Coupled Flow and Geomechanics: Fixed-Stress and Fixed-Strain Splits
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1591
1606
.10.1016/j.cma.2010.12.022
9.
Kim
,
J.
, and
Moridis
,
G. J.
,
2013
, “
Development of the T+M Coupled Flow-Geomechanical Simulator to Describe Fracture Propagation and Coupled Flow-Thermal-Geomechanical Processes in Tight/Shale Gas Systems
,”
Comput. Geosci.
,
60
, pp.
184
198
.10.1016/j.cageo.2013.04.023
10.
Pan
,
P.-Z.
,
Rutqvist
,
J.
,
Feng
,
X.-T.
, and
Yan
,
F.
,
2014
, “
An Approach for Modeling Rock Discontinuous Mechanical Behavior Under Multiphase Fluid Flow Conditions
,”
Rock Mech. Rock Eng.
,
47
(
2
), pp.
589
603
.10.1007/s00603-013-0428-1
11.
Pruess
,
K.
,
Oldenburg
,
C.
, and
Moridis
,
G.
,
1999
, “
TOUGH2 User's Guide, Version 2.0
,”
Lawrence Berkeley National Laboratory
,
Berkeley, CA
, Report No. LBL-43134, p.
192
.
12.
Itasca Consulting Group, Inc.
,
2017
, “
FLAC3D—Fast Lagrangian Analysis of Continua in Three-Dimensions, Ver. 6.0
,”
Itasca Consulting Group
,
Minneapolis, MN
.
13.
Rutqvist
,
J.
,
Wu
,
Y. S.
,
Tsang
,
C. F.
, and
Bodvarsson
,
G.
,
2002
, “
A Modeling Approach for Analysis of Coupled Multiphase Fluid Flow, Heat Transfer, and Deformation in Fractured Porous Rock
,”
Int. J. Rock Mech. Min. Sci.
,
39
(
4
), pp.
429
442
.10.1016/S1365-1609(02)00022-9
14.
Rutqvist
,
J.
, and
Tsang
,
C.-F.
,
2003
, “
TOUGH-FLAC: A Numerical Simulator for Analysis of Coupled Thermal-Hydrologic-Mechanical Processes in Fractured and Porous Geological Media Under Multi-Phase Flow Conditions
,”
Proceedings of the TOUGH Symposium
, Lawrence Berkeley National Laboratory, Berkeley, CA, May 12–14.
15.
Rutqvist
,
J.
,
Zheng
,
L.
,
Chen
,
F.
,
Liu
,
H. H.
, and
Birkholzer
,
J.
,
2014
, “
Modeling of Coupled Thermo-Hydro- Mechanical Processes With Links to Geochemistry Associated With Bentonite-Backfilled Repository Tunnels in Clay Formations
,”
Rock Mech. Rock Eng.
,
47
(
1
), pp.
167
186
.10.1007/s00603-013-0375-x
16.
Figueiredo
,
B.
,
Tsang
,
C.-F.
,
Rutqvist
,
J.
,
Bensabat
,
J.
, and
Niemi
,
A.
,
2015
, “
Coupled Hydromechanical Processes and Fault Reactivation Induced by CO2 Injection in a Three-Layer Storage Formation
,”
Int. J. Greenhouse Gas Control
,
39
, pp.
432
448
.10.1016/j.ijggc.2015.06.008
17.
Kim
,
J.
,
Moridis
,
G. J.
,
Yang
,
D.
, and
Rutqvist
,
J.
,
2012
, “
Numerical Studies on Two-Way Coupled Fluid Flow and Geomechanics in Hydrate Deposits
,”
SPE J.
,
17
(
2
), pp.
485
501
.10.2118/141304-PA
18.
Pruess
,
K.
,
1991
, “TOUGH2: A General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow,”
epub
.10.2172/5212064
19.
Passut
,
C. A.
, and
Danner
,
R. P.
,
1972
, “
Correlation of Ideal Gas Enthalpy, Heat Capacity and Entropy
,”
Ind. Eng. Chem. Process Des. Dev.
,
11
(
4
), pp.
543
546
.10.1021/i260044a016
20.
Sun
,
X.
, and
Mohanty
,
K. K.
,
2005
, “
Simulation of Methane Hydrate Reservoir
,”
SPE Reservoir Simulation Symposium
, The Woodlands, TX, Jan. 31–Feb. 2.
21.
Blanco-Martín
,
L.
,
Rutqvist
,
J.
, and
Birkholzer
,
J. T.
,
2017
, “
Extension of TOUGH-FLAC to the Finite Strain Framework
,”
Comput. Geosci.
,
108
, pp.
64
71
.10.1016/j.cageo.2016.10.015
22.
Han
,
Y.
,
Hampton
,
J.
,
Li
,
G.
,
Warpinski
,
N. R.
, and
Mayerhofer
,
M. J.
,
2016
, “
Investigation of Hydromechanical Mechanisms in Microseismicity Generation in Natural Fractures Induced by Hydraulic Fracturing
,”
SPE J.
,
21
(
1
), pp.
208
220
.10.2118/167244-PA
23.
Ozisik
,
M. N.
,
1980
,
Heat Conduction
,
Wiley
,
New York
.
24.
Itasca Consulting Group, Inc.,
2011
, “
FLAC—Fast Lagrangian Analysis of Continua, Ver. 7.0
,”
Itasca Consulting Group
,
Minneapolis, MN
.
You do not currently have access to this content.