Abstract

A two-dimensional (2D) transient thermal conduction problem is examined, and numerical solutions to the problem generated by ansys and matlab, employing the finite element (FE) method, are compared against an “intrinsically” verified analytical solution. Various grid densities and time-step combinations are used in the numerical solutions, including some as recommended by default in the ansys software, including coarse, medium, and fine spatial grids. The transient temperature solutions from the analytical and numerical schemes are compared at four specific locations on the body, and time-dependent error curves are generated for each point. Additionally, tabular values of each solution are presented for a more detailed comparison. Two different test cases are examined for the various numerical solutions using selected grid densities. The first case involves uniform constant heating on a portion of one surface for a long duration, up to a dimensionless time of 30. The second test case still involves uniform constant heating but for a dimensionless time of one, immediately followed by an insulated condition on that same surface for another duration of one dimensionless time unit. Although the errors at large times for both ansys and matlab are extremely small, the errors found within the short-duration test are more significant, in particular when the heating is suddenly set “on.” Surprisingly, very small errors occur when the heating is suddenly set “off.” The solution developed using the matlab differential equation solver is found to have errors an order of magnitude larger than those generated using ansys with a similar mesh size and same FE type (quadratic triangular). This occurs not only during the transient but also for steady-state problems. However, the matlab computational efficiency is superior. Also, when using ansys, at early times the numerical errors are very sensitive to the time-step chosen rather than the spatial discretization. Therefore, the time-steps have to be very small near a singularity.

References

1.
Cole
,
K.
,
Beck
,
J.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
,
2011
,
Heat Conduction Using Green's Functions
, 2nd ed.,
Hemisphere Press
,
New York
.
2.
McMasters
,
R. L.
,
Zhou
,
Z.
,
Dowding
,
K. J.
,
Somerton
,
C.
, and
Beck
,
J. V.
,
2002
, “
Exact Solution for Nonlinear Thermal Diffusion and Its Use for Verification
,”
J. Thermophys. Heat Transfer
,
16
(
3
), pp.
366
372
.10.2514/2.6713
3.
Toptan
,
A.
,
Porter
,
N. W.
,
Hales
,
J. D.
,
Williamson
,
R. L.
, and
Pilch
,
M.
,
2020
, “
FY20 Verification of BISON Using Analytic and Manufactured Solutions
,” U.S. Department of Energy, Albuquerque, NM, Report No. CASL-U-2020-1939-000.
4.
Toptan
,
A.
,
Porter
,
N. W.
,
Hales
,
J. D.
,
Spencer
,
B. W.
,
Pilch
,
M.
, and
Williamson
,
R. L.
,
2020
, “
Construction of a Code Verification Matrix for Heat Conduction With Finite Element Code Applications
,”
ASME J. Verif., Validation, Uncertainty Quantif.
,
5
, p.
041002
.10.1115/1.4049037
5.
Beck
,
J.
,
McMasters
,
R.
,
Dowding
,
K.
, and
Amos
,
D.
,
2006
, “
Intrinsic Verification Methods in Linear Heat Conduction
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2984
2994
.10.1016/j.ijheatmasstransfer.2006.01.045
6.
Dowding
,
K. J.
,
Blackwell
,
B. F.
, and
Knupp
,
P.
,
2007
, “
Demonstrating Code Verification Methods With Calore
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2007-5612.
7.
Beck
,
J.
,
Haji-Sheikh
,
A.
,
Amos
,
D.
, and
Yen
,
D.
,
2004
, “
Verification Solution for Partial Heating of Rectangular Solid
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4243
4255
.10.1016/j.ijheatmasstransfer.2004.04.021
8.
Beck
,
J.
,
Blackwell
,
B.
, and
St. Clair
,
C.
,
1985
,
Inverse Heat Conduction
,
Wiley
,
New York
.
9.
de Monte
,
F.
,
Beck
,
J. V.
, and
Amos
,
D. E.
,
2011
, “
A Heat-Flux Based Building Block Approach for Solving Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
2789
2800
.10.1016/j.ijheatmasstransfer.2011.02.060
10.
Beck
,
J.
, and
Arnold
,
K.
,
1977
,
Parameter Estimation
,
Wiley
,
New York
.
11.
Mishra
,
D. K.
,
Dolan
,
K. D.
,
Beck
,
J. V.
, and
Ozadali
,
F.
,
2017
, “
Use of Scaled Sensitivity Coefficient Relations for Intrinsic Verification of Numerical Codes and Parameter Estimation for Heat Conduction
,”
ASME J. Verif., Validation, Uncertainty Quantif.
,
2
(
3
), p.
031005
.10.1115/1.4038494
12.
Kamm
,
J. R.
,
Rider
,
V. J.
, and
Brock
,
J. S.
,
2002
, “
Consistent Metrics for Code Verification
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-02-3794.
13.
Cole
,
K. D.
, and
Yen
,
D. H. Y.
,
2001
, “
Green's Functions, Temperature, and Heat Flux in the Rectangle
,”
Int. J. Heat Mass Transfer
,
44
(
20
), pp.
3883
3894
.10.1016/S0017-9310(01)00040-0
14.
Cole
,
K.
,
Beck
,
J.
,
Woodbury
,
K.
, and
de Monte
,
F.
,
2014
, “
Intrinsic Verification and a Heat Conduction Database
,”
Int. J. Therm. Sci.
,
78
, pp.
36
47
.10.1016/j.ijthermalsci.2013.11.002
15.
Cole
,
K.
,
Woodbury
,
K.
,
Beck
,
J.
,
de Monte
,
F.
,
Amos
,
D.
,
Haji-Sheikh
,
A.
,
Crittenden
,
P.
,
Guimaraes
,
G.
,
McMasters
,
R.
, and
Roberty
,
N.
,
2013
, “
Exact Analytical Conduction Toolbox (ExACT)
,” University of Nebraska at Lincoln, Lincoln, NE, accessed Sept. 10, 2019, https://exact.unl.edu/
16.
McMasters
,
R.
,
de Monte
,
F.
,
Beck
,
J. V.
, and
Amos
,
D.
,
2018
, “
Transient Two-Dimensional Heat Conduction Problem With Partial Heating Near Corners
,”
ASME J. Heat Transfer
,
140
(
2
), p.
021301
.10.1115/1.4037542
17.
Oldham
,
K.
,
Myland
,
J.
, and
Spanier
,
J.
,
2009
,
An Atlas of Functions
, 2nd ed.,
Springer
,
New York
.
18.
Beck
,
J.
, and
Cole
,
K.
,
2007
, “
Improving Convergence of Summations in Heat Conduction
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
257
268
.10.1016/j.ijheatmasstransfer.2006.06.032
19.
Beck
,
J.
,
2011
, “
Transient Three-Dimensional Heat Conduction Problems With Partial Heating
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2479
2489
.10.1016/j.ijheatmasstransfer.2011.02.014
20.
D'Alessandro
,
G.
, and
de Monte
,
F.
,
2018
, “
Intrinsic Verification of an Exact Analytical Solution in Transient Heat Conduction
,”
Comput. Therm. Sci.
,
10
(
3
), pp.
251
272
.10.1615/ComputThermalScien.2017021201
21.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishing
,
Albuquerque, NM
.
22.
McMasters
,
R.
,
de Monte
,
F.
, and
Beck
,
J. V.
,
2019
, “
Generalized Solution for Two-Dimensional Transient Heat Conduction Problems With Partial Heating Near a Corner
,”
ASME J. Heat Transfer
,
141
(
7
), p.
071301
.10.1115/1.4043568
23.
de Monte
,
F.
,
Beck
,
J. V.
, and
Amos
,
D. E.
,
2012
, “
Solving Two-Dimensional Cartesian Unsteady Heat Conduction Problems for Small Values of the Time
,”
Int. J. Therm. Sci.
,
60
, pp.
106
113
.10.1016/j.ijthermalsci.2012.05.002
24.
Abramowitz
,
M.
, and
Stegun
,
I.
,
1972
,
Handbook of Mathematical Functions
, 10th ed.,
U.S. Department of Commerce
, Washington, DC, p.
1025
.
You do not currently have access to this content.