Abstract

Averages are measured in many circumstances for diagnostic, predictive, or surveillance purposes. Examples include average stress along a beam, average speed along a section of highway, average alcohol consumption per month, average gross domestic product (GDP) over a large region, and a student's average grade over 4 yr of study. However, the average value of a variable reveals nothing about fluctuations of the variable along the path that is averaged. Extremes—stress concentrations, speeding violations, binge drinking, poverty and wealth, and intellectual incompetence in particular topics—may be more significant than the average. This paper explores the choice of design variables and performance requirements to achieve robustness against uncertainty when interpreting an average, in face of uncertain fluctuations of the averaged variable. Extremes are not observed, but robustness against those extremes enhances the ability to interpret the observed average in terms of the extremes. The opportuneness from favorable uncertainty is also explored. We examine the design of a cantilever beam with uncertain loads. We derive four generic propositions, based on info-gap decision theory, that establish necessary and sufficient conditions for robust or opportune dominance, and for sympathetic relations between robustness to pernicious uncertainty and opportuneness from propitious uncertainty. Some of the highlights are as follows: (1) Averages are used for diagnosis, prediction, or surveillance, but hide important extremes. (2) Averages are measured on uncertain varying processes. (3) Info-gap theory is employed to model and manage process uncertainty. (4) Assessing robustness to uncertainty enables interpretation of averages regarding adverse extremes. (5) Assessing opportuneness from uncertainty enables interpretation of averages regarding favorable extremes.

References

1.
Ozkul
,
M. H.
, and
Ozkul
,
T.
,
2011
, “
A Fuzzy-Logic-Based Model for Assessment of Human Facial Harmony Based on Theory of Averages
,”
J. Franklin Inst.
,
348
(
8
), pp.
2216
2234
.10.1016/j.jfranklin.2011.06.014
2.
CDC
,
2021
, “Alcohol and Public Health,” accessed Apr. 28, https://www.cdc.gov/alcohol/faqs.htm
3.
IFAC,
1963
,
Proceedings of the Second Congress of the International Federation of Automatic Control (I.F.A.C.)
, Vol. 2, Basel, Switzerland, 1963.
4.
Dong
,
T.
,
Bu
,
X.
, and
Hu
,
W.
,
2020
, “
Distributed Differentially Private Average Consensus for Multi-Agent Networks by Additive Functional Laplace Noise
,”
J. Franklin Inst.
,
357
(
6
), pp.
3565
3584
.10.1016/j.jfranklin.2019.12.027
5.
OECD, 2010, OECD Factbook 2010: Economic, Environmental and Social Statistics.
6.
Stein
,
J. L.
, and
Stein
,
S.
,
2013
, “
Formulating Natural Hazard Policies Under Uncertainty
,”
SIAM/ASA J. Uncertainty Quantif.
,
1
(
1
), pp.
42
56
.10.1137/120891149
7.
Regier
,
J. C.
, and
Stark
,
P. B.
,
2015
, “
Mini-Minimax Uncertainty Quantification for Emulators
,”
SIAM/ASA J. Uncertainty Quantif.
,
3
(
1
), pp.
686
708
.10.1137/130917909
8.
Grigoriu
,
M.
,
2016
, “
Microstructure Models and Material Response by Extreme Value Theory
,”
SIAM/ASA J. Uncertainty Quantif.
,
4
(
1
), pp.
190
217
.10.1137/15M1006453
9.
Grigoriu
,
M.
,
2017
, “
Estimates of System Response Maxima by Extreme Value Theory and Surrogate Models
,”
SIAM/ASA J. Uncertainty Quantif.
,
5
(
1
), pp.
922
955
.10.1137/17M1114223
10.
Rao
,
V.
, and
Anitescu
,
M.
,
2021
, “
Efficient Computation of Extreme Excursion Probabilities for Dynamical Systems Through Rice's Formula
,”
SIAM/ASA J. Uncertainty Quantif.
,
9
(
2
), pp.
731
762
.10.1137/19M1308177
11.
Mood
,
A. M.
,
Graybill
,
F. A.
, and
Boes
,
D. C.
,
1974
,
Introduction to the Theory of Statistics
, 3rd ed.,
McGraw-Hill
, New York.
12.
Ben-Haim
,
Y.
,
2006
,
Info-Gap Decision Theory: Decisions Under Severe Uncertainty
, 2nd ed.,
Academic Press
,
London
.
13.
Hacking
,
I.
,
1975
,
The Emergence of Probability: A Philosophical Study of Early Ideas About Probability, Induction and Statistical Inference
,
Cambridge University Press
, Cambridge, UK.
14.
Porter
,
T. M.
,
1986
,
The Rise of Statistical Thinking: 1820–1900
,
Princeton University Press
,
Princeton, NJ
.
15.
Stigler
,
S. M.
,
1986
,
The History of Statistics: The Measurement of Uncertainty Before 1900
,
Harvard University Press
, Boston, MA.
16.
Lejewski
,
C.
,
1996
, “
Jan Lukasiewicz
,”
The Encyclopedia of Philosophy
, Vol.
5
,
P.
Edwards
, ed.,
Simon and Schuster Macmillan
, New York.
17.
Wald
,
A.
,
1945
, “
Statistical Decision Functions Which Minimize the Maximum Risk
,”
Ann. Math.
,
46
(
2
), pp.
265
280
.10.2307/1969022
18.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp.
338
353
.10.1016/S0019-9958(65)90241-X
19.
Ferson, S.
,
2002
,
RAMAS Risk Calc 4.0 Software: Risk Assessment With Uncertain Numbers
,
Lewis Publishers
,
Boca Raton, FL
.
20.
Miranda
,
E.
,
2008
, “
A Survey of the Theory of Coherent Lower Previsions
,”
Int. J. Approximate Reasoning
,
48
(
2
), pp.
628
658
.10.1016/j.ijar.2007.12.001
21.
Walley
,
P.
,
1996
, “
Measures of Uncertainty in Expert Systems
,”
Artif. Intell.
,
83
(
1
), pp.
1
58
.10.1016/0004-3702(95)00009-7
22.
Dempster
,
A. P.
,
1967
, “
Upper and Lower Probabilities Induced by Multivalue Mappings
,”
Ann. Math. Stat.
,
38
(
2
), pp.
325
339
.10.1214/aoms/1177698950
23.
Shafer
,
G.
,
1976
,
A Mathematical Theory of Evidence
,
Princeton University Press
, Princeton, NJ.
24.
Klir
,
G. J.
,
2006
,
Uncertainty and Information: Foundations of Generalized Information Theory
,
Wiley
, Hoboken, NJ.
25.
Ben-Haim
,
Y.
,
2010
,
Info-Gap Economics: An Operational Introduction
,
Palgrave-Macmillan
,
Hampshire, UK
.
26.
Kolmogorov
,
A. N.
,
1933
,
Foundations of the Theory of Probability
, 2nd Engl. ed.,
N.
Morrison
, transl. ed., based on the 1933 German monograph, Dover Publications, Mineola, NY.
27.
Ben-Haim
,
Y.
,
1999
, “
Set-Models of Information-Gap Uncertainty: Axioms and an Inference Scheme
,”
J. Franklin Inst.
,
336
(
7
), pp.
1093
1117
.10.1016/S0016-0032(99)00024-1
28.
Ewing
,
M. E.
,
Liechty
,
B. C.
, and
Black
,
D. L.
,
2018
, “
A General Methodology for Uncertainty Quantification in Engineering Analyses Using a Credible Probability Box
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
3
(
2
), p.
021003
.10.1115/1.4041490
You do not currently have access to this content.