When a structure deviates from axisymmetry because of circumferentially varying model features, significant changes can occur to its natural frequencies and modes, particularly for the doublet modes that have non-zero nodal diameters and repeated natural frequencies in the limit of axisymmetry. Of technical interest are configurations in which inertia, dissipation, stiffness, or domain features are evenly distributed around the structure. Aside from the well-studied phenomenon of eigenvalue splitting, whereby the natural frequencies of certain doublets split into distinct values, modes of the axisymmetric structure that are precisely harmonic become contaminated with certain additional wavenumbers. From analytical, numerical, and experimental perspectives, this paper investigates spatial modulation of the doublet modes, particularly those retaining repeated natural frequencies for which modulation is most acute. In some cases, modulation can be sufficiently severe that a mode shape will “beat” spatially as harmonics with commensurate wavenumbers combine, just as the superposition of time records having nearly equal frequencies leads to classic temporal beating. An algebraic relation and a diagrammatic method are discussed with a view towards predicting the wavenumbers present in modulated eigenfunctions given the number of nodal diameters in the base mode and the number of equally spaced model features. [S0739-3717(00)01501-4]

1.
Zenneck
,
J.
,
1899
, “
Ueber die freiea Schwingungen nur anna¨hernd vollkommener kreisformiger Platten
,”
Ann. Phys. (Leipzig)
,
67
, pp.
165
184
.
2.
Tobias
,
S. A.
,
1951
, “
A Theory of Imperfection for the Vibrations of Elastic Bodies of Revolution
,”
Engineering
,
172
, pp.
409
411
.
3.
Tobias
,
S. A.
,
1958
, “
Non-linear Forced Vibrations of Circular Disks
,”
Engineering
,
186
, pp.
51
56
.
4.
Thomas
,
D. L.
,
1974
, “
Standing Waves in Rotationally Periodic Structures
,”
J. Sound Vib.
,
37
, pp.
288
290
.
5.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
, pp.
81
102
.
6.
Ewins
,
D. J.
,
1969
, “
The Effects of Detuning Upon the Forced Vibrations of Bladed Disks
,”
J. Sound Vib.
,
9
, pp.
65
79
.
7.
Stange
,
W. A.
, and
MacBain
,
J. C.
,
1983
, “
An Investigation of Dual Mode Phenomena in a Mistuned Bladed Disk
,”
ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design
,
105
, pp.
402
407
.
8.
Charnley
,
T.
, and
Perrin
,
R.
,
1978
, “
Studies With an Eccentric Bell
,”
J. Sound Vib.
,
58
, pp.
517
525
.
9.
Nelson
,
R. L.
, and
Thomas
,
D. L.
,
1978
, “
Free Vibration Analysis of Cooling Towers With Column Supports
,”
J. Sound Vib.
,
57
, pp.
149
153
.
10.
Allaei
,
D.
,
Soedel
,
W.
, and
Yang
,
T. Y.
,
1986
, “
Natural Frequencies and Modes of Rings that Deviate from Perfect Axisymmetry
,”
J. Sound Vib.
,
111
, pp.
9
27
.
11.
Fox
,
C. H. J.
,
1990
, “
A Simple Theory for the Analysis and Correction of Frequency Splitting in Slightly Imperfect Rings
,”
J. Sound Vib.
,
142
, pp.
227
243
.
12.
Allaei
,
D.
,
Soedel
,
W.
, and
Yang
,
T. Y.
,
1987
, “
Eigenvalues of Rings with Radial Spring Attachments
,”
J. Sound Vib.
,
121
, pp.
547
561
.
13.
Yu
,
R. C.
, and
Mote
, Jr.,
C. D.
,
1987
, “
Vibration and Parametric Excitation in Asymmetric Circular Plates Under Moving Loads
,”
J. Sound Vib.
,
119
, pp.
409
427
.
14.
Shen
,
I. Y.
, and
Mote
, Jr.,
C. D.
,
1992
, “
Dynamic Analysis of Finite Linear Elastic Solids Containing Small Elastic Imperfections: Theory With Application to Asymmetric Circular Plates
,”
J. Sound Vib.
,
155
, pp.
443
465
.
15.
Tseng
,
J.-G.
, and
Wickert
,
J. A.
,
1994a
, “
Vibration of an Eccentrically Clamped Annular Plate
,”
ASME J. Vibr. Acoust.
,
116
, pp.
155
160
.
16.
Parker
,
R. G.
and
Mote
, Jr.,
C. D.
,
1996a
, “
Exact Boundary Condition Perturbation Solutions in Eigenvalue Problems
,”
ASME J. Appl. Mech.
,
63
, pp.
128
135
.
17.
Parker
,
R. G.
, and
Mote
, Jr.,
C. D.
,
1996b
, “
Exact Perturbation for the Vibration of Almost Annular or Circular Plates
,”
ASME J. Vibr. Acoust.
,
118
, pp.
436
445
.
18.
Tseng
,
J.-G.
, and
Wickert
,
J. A.
,
1994b
, “
On the Vibration of Bolted Plate and Flange Assemblies
,”
ASME J. Vibr. Acoust.
,
116
, pp.
468
473
.
19.
Rayleigh, 1887, The Theory of Sound, New York: Dover, second edition (1945 reissue).
20.
Mallik
,
A. K.
, and
Mead
,
D. J.
,
1977
, “
Free Vibration of Thin Circular Rings on Periodic Radial Supports
,”
J. Sound Vib.
,
54
, pp.
13
27
.
21.
Mead
,
D. J.
,
1973
, “
A General Theory of Harmonic Wave Propagation in Linear Periodic Systems with Multiple Coupling
,”
J. Sound Vib.
,
27
, pp.
235
260
.
22.
Orris
,
R. M.
, and
Petyt
,
M.
,
1974
, “
A Finite Element Study of Harmonic Wave Propagation in Periodic Structures
,”
J. Sound Vib.
,
33
, pp.
223
236
.
23.
Courant, R., and Hilbert, D., 1953, Methods of Mathematical Physics, Wiley-Interscience reprint (1989).
24.
Morse, P. M., and Feshbach, H., 1953, Methods of Theoretical Physics, McGraw-Hill.
25.
Wagner
,
L. F.
, and
Griffin
,
J. H.
,
1993
, “
A Continuous Analog Model for Grouped-Blade Vibration
,”
J. Sound Vib.
,
165
, pp.
421
438
.
You do not currently have access to this content.