The general control laws for pointwise controllers to dissipate vibratory energies of translating beams and strings with arbitrarily varying length are presented. Special domain and boundary control laws that can be easily implemented result as a special case. Sufficient conditions for uniform stability and uniform exponential stability of controlled systems are established via Lyapunov stability criteria. Numerical simulations demonstrate the effectiveness of the active controllers in stabilizing translating media during both extension and retraction. Optimal gains leading to the fastest rates of decay of vibratory energies of controlled systems are identified. It is shown that under the optimal control gains, translating media can be completely stabilized during extension and retraction.

1.
Mote
, Jr.,
C. D.
,
1971
, “
Dynamic Stability of Axially Moving Materials
,”
Shock Vib. Dig.
,
4
, No.
4
, pp.
2
11
.
2.
Yuh
,
J.
, and
Young
,
T.
,
1991
, “
Dynamic Modeling of an Axially Moving Beam in Rotation: Simulation and Experiment
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
34
40
.
3.
Tsuchiya
,
K.
,
1983
, “
Dynamics of a Spacecraft During Extension of Flexible Appendages
,”
AIAA J.
,
6
, No.
2
, pp.
100
103
.
4.
Terumichi
,
Y.
,
Ohtsuka
,
M.
,
Yoshizawa
,
M.
,
Fukawa
,
Y.
, and
Tsujioka
,
Y.
,
1997
, “
Nonstationary Vibrations of a String with Time-Varying Length and a Mass-Spring System Attached at the Lower End
,”
Nonlinear Dyn.
,
12
, No.
1
, pp.
39
55
.
5.
Misra
,
A. K
, and
Modi
,
V. J.
,
1985
, “
Depolyment and Retrieval of Shuttle Supported Tethered Satellite
,”
AIAA Journal of Guidance, Control, and Dynamics
,
5
, No.
3
, pp.
278
285
.
6.
Mansfield
,
L.
, and
Simmonds
,
J. G.
,
1987
, “
The Reverse Spaghetti Problem: Drooping Motion of an Elastica Issuing from a Horizontal Guide
,”
ASME J. Appl. Mech.
,
54
, pp.
147
150
.
7.
Stolte
,
J.
, and
Benson
,
R. C.
,
1992
, “
Dynamic Deflection of Paper Emerging from a Channel
,”
ASME J. Vibr. Acoust.
,
114
, No.
2
, pp.
187
193
.
8.
Stolte
,
J.
, and
Benson
,
R. C.
,
1993
, “
An Extending Dynamic Elastica—Impact with a Surface
,”
ASME J. Vibr. Acoust.
,
115
, No.
3
, pp.
308
313
.
9.
Sato
,
K.
, and
Sakawa
,
Y.
,
1988
, “
Modelling and Control of a Flexible Rotary Crane
,”
Int. J. Control
,
48
, No.
5
, pp.
2085
2105
.
10.
Kumaniecka
,
K.
, and
Niziok
,
J.
,
1994
, “
Dynamic Stability of a Rope with Slow Variability of the Parameters
,”
J. Sound Vib.
178
, No.
2
, pp.
211
226
.
11.
Carrier
,
G. F.
,
1949
, “
The Spaghetti Problem
,”
Am. Math. Monthly
,
56
, pp.
669
672
.
12.
Tabarrok
,
B.
,
Leech
,
C. M.
, and
Kim
,
Y. I.
,
1974
, “
On the Dynamics of an Axially Moving Beam
,”
J. Franklin Inst.
,
297
, No.
3
, pp.
201
220
.
13.
Zajaczkowski
,
J.
, and
Lipinski
,
J.
,
1979
, “
Instability of the Motion of a Beam of Periodically Varying Length
,”
J. Sound Vib.
63
, pp.
9
18
.
14.
Zajaczkowski
,
J.
, and
Yamada
,
G.
,
1980
, “
Further Results on Instability of the Motion of a Beam of Periodically Varying Length
,”
J. Sound Vib.
,
68
, No.
2
, pp.
173
180
.
15.
Zhu
,
W. D.
, and
Ni
,
J.
,
2000
, “
Energetics and Stability of Translating Media with an Arbitrarily Varying Length
,”
ASME J. Vibr. Acoust.
,
122
, pp.
295
304
.
16.
Vu-Quoc
,
L.
, and
Li
,
S.
,
1995
, “
Dynamics of Sliding Geometrically-Exact Beams: Large Angle Maneuver and Parametric Resonance
,”
Comput. Methods Appl. Mech. Eng.
,
120
, pp.
65
118
.
17.
Yang
,
B.
, and
Mote
, Jr.,
C. D.
,
1991
, “
Active Vibration Control of the Axially Moving String in the S Domain
,”
ASME J. Appl. Mech.
,
58
, pp.
189
196
.
18.
Zhu
,
W. D.
,
Mote
, Jr.,
C. D.
, and
Guo
,
B. Z.
,
1997
, “
Asymptotic Distribution of Eigenvalues of a Constrained Translating String
,”
ASME J. Appl. Mech.
,
64
, pp.
613
619
.
19.
Zhu
,
W. D.
,
Guo
,
B. Z.
, and
Mote
, Jr.,
C. D.
,
2000
, “
Stabilization of a Translating Tensioned Beam Through a Pointwise Control Force
,”
ASME J. Dyn. Syst., Meas., Control
,
122
, pp.
322
331
.
20.
Yang
,
B.
, and
Mote
, Jr.,
C. D.
,
1990
, “
Vibration Control of Band Saws: Theory and Experiment
,”
Wood Sci.
,
24
, pp.
355
373
.
21.
Huang
,
D.
,
Fan
,
Q.
, and
Tan
,
C. A.
,
1998
, “
Experimental Investigations on the Active Vibration Control of Chain Drives
,”
Noise Control Eng. J.
,
46
, No.
4
, pp.
139
145
.
22.
Rahn, C. D., “Parametric Control of Vibration in Flexible and Axially-Moving Materials Systems,” 1992, Ph.D. Dissertation, University of California, Berkeley.
23.
Rahn
,
C. D.
, and
Mote
, Jr.,
C. D.
,
1994
, “
Parametric Control of Flexible Systems
,”
ASME J. Vibr. Acoust.
,
116
, pp.
379
385
.
24.
Chung
,
C. A.
, and
Tan
,
C. A.
,
1995
, “
Active Vibration Control of the Axially Moving String by Wave Cancellation
,”
ASME J. Vibr. Acoust.
,
117
, No.
1
, pp.
49
55
.
25.
Lee
,
S. Y.
, and
Mote
, Jr.,
C. D.
,
1996
, “
Vibration Control of an Axially Moving String by Boundary Control
,”
ASME J. Dyn. Syst., Meas., Control
,
118
, pp.
66
74
.
26.
Renshaw
,
A. A.
,
Rahn
,
C. D.
,
Wickert
,
J. A.
, and
Mote
, Jr.,
C. D.
,
1998
, “
Energy and Conserved Functionals for Axially Moving Materials
,”
ASME J. Vibr. Acoust.
,
120
, pp.
634
636
.
27.
Rugh, W. J., 1996, Linear System Theory, Prentice Hall, pp. 116–117.
28.
Wang
,
P. K. C.
, and
Wei
,
J. D.
,
1987
, “
Vibrations in a Moving Flexible Robot Arm
,”
J. Sound Vib.
,
116
, pp.
149
160
.
You do not currently have access to this content.