This paper is concerned with the dynamic stiffness formulation and its application for a Bernoulli-Euler beam carrying a two degree-of-freedom spring-mass system. The effect of a two degree-of-freedom system kinematically connected to the beam is represented exactly by replacing it with equivalent stiffness coefficients, which are added to the appropriate stiffness coefficients of the bare beam. Numerical examples whose results are obtained by applying the Wittrick-Williams algorithm to the total dynamic stiffness matrix are given and compared with published results. Applications of the theory include the free vibration analysis of frameworks carrying two degree-of-freedom spring-mass systems.

1.
Chen
,
Y.
,
1963
, “
On the Vibration of Beams or Rods Carrying a Concentrated Mass
,”
ASME J. Appl. Mech.
,
30
, pp.
310
311
.
2.
Pan
,
H. H.
,
1965
, “
Transverse Vibration of an Euler Beam Carrying a System of Heavy Bodies
,”
ASME J. Appl. Mech.
,
32
, pp.
434
437
.
3.
Laura
,
P. A. A.
,
Pombo
,
J. L.
, and
Susemihl
,
E. A.
,
1974
, “
A Note on the Vibration of a Clamped-Free Beam with a Mass at the Free End
,”
J. Sound Vib.
,
37
, pp.
161
168
.
4.
Parnell
,
L. A.
, and
Cobble
,
M. H.
,
1976
, “
Lateral Displacements of a Vibrating Cantilever Beam with a Concentrated Mass
,”
J. Sound Vib.
,
44
, pp.
499
511
.
5.
Gurgoze
,
M.
,
1984
, “
A Note on the Vibrations of Restrained Beams and Rods with Point Masses
,”
J. Sound Vib.
,
96
, pp.
461
468
.
6.
Burch
,
J. C.
, and
Mitchell
,
T. P.
,
1987
, “
Vibration of a Mass-Loaded Clamped-Free Timoshenko beam
,”
J. Sound Vib.
,
114
, pp.
341
345
.
7.
Laura
,
P. A. A.
,
Filipich
,
C. P.
, and
Cortinez
,
V. H.
,
1987
, “
Vibrations of Beams and Plates Carrying Concentrated Masses
,”
J. Sound Vib.
,
117
, pp.
459
465
.
8.
Wu
,
J. S.
, and
Lin
,
T. L.
,
1990
, “
Free Vibration Analysis of a Uniform Cantilever Beam with Point Masses by an Analytical-and-Numerical-Combined Method
,”
J. Sound Vib.
,
136
, pp.
201
213
.
9.
Abramovich
,
H.
, and
Hamburger
,
O.
,
1991
, “
Vibration of a Cantilever Timoshenko Beam with a Tip Mass
,”
J. Sound Vib.
,
148
, pp.
162
170
.
10.
Massalas
,
C.
, and
Soldatos
,
K.
,
1978
, “
Free Vibration of a Beam Subjected to Elastic Constraints
,”
J. Sound Vib.
,
57
, pp.
607
608
.
11.
Davies
,
H. G.
, and
Rogers
,
R. J.
,
1979
, “
The Vibration of Structures Elastically Constrained at Discrete Points
,”
J. Sound Vib.
,
63
, pp.
437
447
.
12.
Lau
,
J. H.
,
1981
, “
Fundamental Frequency of a Constrained Beam
,”
J. Sound Vib.
,
78
, pp.
154
157
.
13.
Verniere
,
P.
,
Ficcadenti
,
G.
, and
Laura
,
P. A. A.
,
1984
, “
Dynamic Analysis of a Beam with an Intermediate Elastic Support
,”
J. Sound Vib.
,
96
, pp.
381
389
.
14.
Lau
,
J. H.
,
1984
, “
Vibration Frequencies and Mode Shapes for a Constrained Cantilever
,”
ASME J. Appl. Mech.
,
51
, pp.
182
187
.
15.
Maurizi
,
M. J.
, and
Bambill de Rossit
,
D. V.
,
1987
, “
Free Vibration of a Clamped-Clamped Beam with an Intermediate Elastic Support
,”
J. Sound Vib.
,
119
, pp.
173
176
.
16.
Rao
,
C. K.
,
1989
, “
Frequency Analysis of Clamped-Clamped Uniform Beams with Intermediate Elastic Support
,”
J. Sound Vib.
,
133
, pp.
502
509
.
17.
Jacquot
,
R. G.
, and
Gibson
,
J. D.
,
1972
, “
The Effects of Discrete Masses and Elastic Supports on Continuous Beam Natural Frequencies
,”
J. Sound Vib.
,
23
, pp.
237
244
.
18.
Laura
,
P. A. A.
,
Maurizi
,
M. J.
, and
Pombo
,
J. L.
,
1975
, “
A Note on the Dynamic Analysis of an Elastically Restrained-Free Beam with a Mass at the Free End
,”
J. Sound Vib.
,
41
, pp.
397
405
.
19.
Laura
,
P. A. A.
,
Susemihl
,
E. A.
,
Pombo
,
J. L.
,
Luisoni
,
L. E.
, and
Gelos
,
R.
,
1977
, “
On the Dynamic Behavior of Structural Elements Carrying Elastically Mounted, Concentrated Masses
,”
Appl. Acoust.
,
10
, pp.
121
145
.
20.
Bapat
,
C. N.
, and
Bapat
,
C.
,
1987
, “
Natural Frequencies of a Beam with Nonclassical Boundary Conditions and Concentrated Masses
,”
J. Sound Vib.
,
112
, pp.
177
182
.
21.
Ercoli
,
L.
, and
Laura
,
P. A. A.
,
1987
, “
Analytical and Experimental Investigation on Continuous Beams Carrying Elastically Mounted Masses
,”
J. Sound Vib.
,
114
, pp.
519
533
.
22.
Larrondo
,
H.
,
Avalos
,
D.
, and
Laura
,
P. A. A.
,
1992
, “
Natural Frequencies of a Bernoulli Beam Carrying an Elastically Mounted Concentrated Mass
,”
Ocean Eng.
,
19
, pp.
461
468
.
23.
Abramovich
,
H.
, and
Hamburger
,
O.
,
1992
, “
Vibration of a Cantilever Timoshenko Beam with Translational and Rotational Springs and with Tip Mass
,”
J. Sound Vib.
,
154
, pp.
67
80
.
24.
Rossi
,
R. E.
,
Laura
,
P. A. A.
,
Avalos
,
D. R.
, and
Larrondo
,
H. O.
,
1993
, “
Free Vibrations of Timoshenko Beams Carrying Elastically Mounted, Concentrated Masses
,”
J. Sound Vib.
,
165
, pp.
209
223
.
25.
Gurgoze
,
M.
,
1996
, “
On the Eigenfrequencies of a Cantilever Beam with Attached Tip Mass and a Spring-Mass System
,”
J. Sound Vib.
,
190
, pp.
149
162
.
26.
Jen
,
M. U.
, and
Magrab
,
E. B.
,
1993
, “
Natural Frequencies and Mode Shapes of Beams Carrying a Two-Degree-of-Freedom Spring-Mass System
,”
ASME J. Vibr. Acoust.
,
115
, pp.
202
209
.
27.
Wu
,
J. S.
, and
Huang
,
C. G.
,
1995
, “
Free and Forced Vibrations of a Timoshenko Beam with any Number of Translational and Rotational Springs and Lumped Masses
,”
Int. J. Commun. Num. Meth. Eng.
,
11
, pp.
743
756
.
28.
Chang
,
T. P.
, and
Chang
,
C. Y.
,
1998
, “
Vibration Analysis of Beams with a Two Degree-of-Freedom Spring-Mass System
,”
Int. J. Solids Struct.
,
35
, pp.
383
401
.
29.
Wu
,
J. S.
, and
Chou
,
H. M.
,
1998
, “
Free Vibration Analysis of a Cantilever Beam Carrying any Number of Elastically Mounted Pointed Masses with the Analytical-and-Numerical-Combined Method
,”
J. Sound Vib.
,
213
, pp.
317
332
.
30.
Wu
,
J. S.
, and
Chou
,
H. M.
,
1999
, “
A New Approach for Determining the Natural Frequencies and Mode Shapes of a Uniform Beam Carrying any Number of Sprung Masses
,”
J. Sound Vib.
,
220
, pp.
451
468
.
31.
Wu
,
J. J.
, and
Whittaker
,
A. R.
,
1999
, “
The Natural Frequencies and Mode Shapes of a Uniform Beam with Multiple Two-DOF Spring-Mass Systems
,”
J. Sound Vib.
,
227
, pp.
361
381
.
32.
Dowell
,
E. H.
,
1979
, “
On Some General Properties of Combined Dynamical Systems
,”
ASME J. Appl. Mech.
,
46
, pp.
206
209
.
33.
Nicholson
,
J. W.
, and
Bergman
,
L. A.
,
1986
, “
Free Vibration of Combined Dynamical Systems
,”
J. Eng. Mech.
,
112
, pp.
1
13
.
34.
Howson
,
W. P.
, and
Williams
,
F. W.
,
1977
, “
Compact Computation of Natural Frequencies and Buckling Loads for Plane Frames
,”
Int. J. Numer. Methods Eng.
,
11
, pp.
1067
1081
.
35.
Howson
,
W. P.
,
Banerjee
,
J. R.
, and
Williams
,
F. W.
,
1983
, “
Concise Equations and Program for Exact Eigensolutions of Plane Frames including Member Shear
,”
Adv. Eng. Software
,
5
, pp.
137
141
.
36.
Kolousek, V., 1973, Dynamics in Engineering Structures, Butterworths, London.
37.
Wittrick
,
W. H.
, and
Williams
,
F. W.
,
1971
, “
A General Algorithm for Computing Natural Frequencies of Elastic Structures
,”
Q. J. Mech. Appl. Math.
,
24
, pp.
263
284
.
38.
Anderson, M. S., Williams, F. W., Banerjee, J. R., Durling, B. J., Herstrom, C. L., Kennedy D., and Warnaar, D. B., 1986, “User Manual BUNVIS-RG: An Exact Buckling and Vibration Program for Lattice Structures, with Repetitive Geometry and Substructuring option,” NASA Tech. Memo. 87669.
39.
Cheng
,
F. Y.
,
1970
, “
Vibration of Timoshenko Beams and Frameworks
,”
J. Struct. Div. ASCE
,
96
, pp.
551
571
.
40.
Wang
,
T. M.
, and
Kinsman
,
T. A.
,
1971
, “
Vibration of Frame Structures According to the Timoshenko Theory
,”
J. Sound Vib.
,
14
, pp.
215
227
.
41.
Howson
,
W. P.
, and
Williams
,
F. W.
,
1973
, “
Natural Frequencies of Frames with Axially Loaded Timoshenko Members
,”
J. Sound Vib.
,
26
, pp.
503
515
.
42.
Cheng
,
F. Y.
, and
Tseng
,
W. H.
,
1973
, “
Dynamic Stiffness Matrix of Timoshenko Beam Columns
,”
J. Struct. Div. ASCE
,
99
,
527
549
.
43.
Banerjee
,
J. R.
,
1996
, “
Dynamic Stiffness Formulation for Structural Elements: A General Approach
,”
Comput. Struct.
,
63
, pp.
101
103
.
44.
Clough, R. W., and Penzien, J., 1975, Dynamics of Structures, McGraw-Hill, Singapore.
You do not currently have access to this content.