The development of techniques for identification and updating of nonlinear mechanical structures has received increasing attention in recent years. In practical situations, there is not necessarily a priori knowledge about the nonlinearity. This suggests the need for strategies that allow inference of useful information from the data. The present study proposes an algorithm based on a Bayesian inference approach for giving insight into the form of the nonlinearity. A family of parametric models is defined to represent the nonlinear response of a system and the selection algorithm estimates the likelihood that each member of the family is appropriate. The (unknown) probability density function of the family of models is explored using a simple variant of the Markov Chain Monte Carlo sampling technique. This technique offers the advantage that the nature of the underlying statistical distribution need not be assumed a priori. Enough samples are drawn to guarantee that the empirical distribution approximates the true but unknown distribution to the desired level of accuracy. It provides an indication of which models are the most appropriate to represent the nonlinearity and their respective goodness-of-fit to the data. The methodology is illustrated using two examples, one of which comes from experimental data.

1.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1979
, “
A Non-parametric Identification Technique for Non-linear Dynamic Problems
,”
ASME J. Appl. Mech.
,
46
, pp.
433
447
.
2.
Crawley
,
E. F.
, and
Aubert
,
A. C.
,
1986
, “
Identification of Nonlinear Structural Elements by Force-state Mapping
,”
AIAA J.
,
24
, pp.
155
162
.
3.
Crawley, E. F., and O’Donnel, 1986, “Identification of Nonlinear System Parameters in Joints using the Force-state Mapping Technique,” AIAA Paper 86–1013, pp. 659–667.
4.
Simon
,
M.
, and
Tomlinson
,
G. R.
,
1984
, “
Use of the Hilbert Transform in Modal Analysis of Linear and Non-linear Structures
,”
J. Sound Vib.
,
96
, pp.
421
436
.
5.
Feldman
,
M.
,
1994
, “
Nonlinear System Vibration Analysis using the Hilbert Transform-I. Free Vibration Analysis Method ‘FREEVIB,’ 
Mech. Syst. Signal Process.
,
8
, pp.
119
127
.
6.
Feldman
,
M.
,
1994
, “
Nonlinear System Vibration Analysis using the Hilbert Transform-II. Forced Vibration Analysis Method ‘FORCEVIB,’ 
Mech. Syst. Signal Process.
,
8
, pp.
309
318
.
7.
Gifford
,
S. J.
, and
Tomlinson
,
G. R.
,
1989
, “
Recent Advances in the Application of Functional Series to Non-linear Structures
,”
J. Sound Vib.
,
135
, pp.
289
317
.
8.
Leontaritis
,
I. J.
, and
Billings
,
S. A.
,
1985
, “
Input-Output Parametric Models for Non-linear Systems: Part I—Deterministic Non-linear Systems
,”
Int. J. Control
,
41
, pp.
303
328
.
9.
Leontaritis
,
I. J.
, and
Billings
,
S. A.
,
1985
, “
Input-Output Parametric Models for Non-linear Systems: Part II—Stochastic Non-linear Systems
,”
Int. J. Control
,
41
, pp.
329
344
.
10.
Bendat, J. S., and Piersol, A. G., 1980, Engineering Applications of Correlation and Spectral Analysis, John Wiley & Sons, New-York (U.S.A.).
11.
Choi, D., Chang, J., Stearman, R. O., and Powers, E. J., 1984, “Bispectral Interaction of Nonlinear Mode Interactions,” Proceedings of the 2nd International Modal Analysis Conference, Orlando, FL, pp. 602–609.
12.
Worden, K., and Tomlinson, G. R., 2001. Non-linearity in Structural Dynamics: Detection, Identification and Modelling, Institute of Physics Publishing, Bristol, Philadelphia (PA).
13.
Rice
,
H. J.
, and
Fitzpatrick
,
J. A.
,
1991
, “
A Procedure for the Identification of Linear and Non-linear Multi-degree-of-freedom Systems
,”
J. Sound Vib.
,
149
, pp.
397
411
.
14.
Rice
,
H. J.
, and
Fitzpatrick
,
J. A.
,
1991
, “
The Measurement of Non-linear Damping in Single-degree-of-freedom Systems
,”
ASME J. Vibr. Acoust.
,
113
, pp.
132
140
.
15.
Esmonde
,
H.
,
Fitzpatrick
,
J. A.
,
Rice
,
H. J.
, and
Axisa
,
F.
,
1992
, “
Modelling and Identification of Non-linear Squeeze Film Dynamics
,”
J. Fluids Struct.
,
6
, pp.
223
248
.
16.
Richards
,
C. M.
, and
Singh
,
R.
,
1998
, “
Identification of Multi-Degree-of-Freedom Non-linear Systems Under Random Excitations by the Reverse-Path Spectral Method
,”
J. Sound Vib.
,
213
, pp.
673
708
.
17.
Bendat, J. S., 1990, Nonlinear System Analysis and Identification from Random Data, John Wiley & Sons, New-York (U.S.A.).
18.
Adams
,
D. E.
, and
Allemang
,
R. J.
,
1999
, “
Characterization of Nonlinear Vibrating Systems using Internal Feeback and Frequency Response Modulation
,”
ASME J. Vibr. Acoust.
,
121
, pp.
495
500
.
19.
Adams
,
D. E.
, and
Allemang
,
R. J.
,
2000
, “
A Frequency Domain Method for Estimating the Parameters of a Non-Linear Structural Dynamic Model through Feedback
,”
Mech. Syst. Signal Process.
,
14
, pp.
637
656
.
20.
Hemez
,
F. M.
, and
Doebling
,
S. W.
,
2001
, “
Review and Assessment of Model Updating for Non-linear, Transient Dynamics
,”
Mech. Syst. Signal Process.
,
15
, pp.
45
74
.
21.
Lenaerts
,
V.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2001
, “
Proper Orthogonal Decomposition for Model Updating of Non-linear Mechanical Systems
,”
Mech. Syst. Signal Process.
,
15
, pp.
31
43
.
22.
Dippery, K. D., and Smith, S. W., 1998, “An Optimal Control Approach to Nonlinear System Identification,” Proceedings of the 16th International Modal Analysis Conference, Santa Barbara CA, pp. 637–643.
23.
Bendat, J. S., 1986, Random Data: Analysis and Measurement Procedures, John Wiley-Interscience, New York (NY), second edition.
24.
Chipman
,
H.
,
Hamada
,
M.
, and
Wu
,
C. F. J.
,
1997
, “
A Bayesian Variable Selection Approach for Analyzing Designed Experiments With Complex Aliasing
,”
Technometrics
,
39
, pp.
372
381
.
25.
Wu, C. F. J., and Hamada, M., 2000, Experiments: Planning, Analysis, and Parameter Design Optimization, Wiley, New-York, NY.
26.
George
,
E. I.
, and
McCulloch
,
R. E.
,
1993
, “
Variable Selection via Gibbs Sampling
,”
Journal of the American Statistical Society
,
88
, pp.
881
889
.
27.
Carlin
,
B. P.
, and
Chib
,
S.
,
1995
, “
Bayesian Model Choice via Markov Chain Monte Carlo
,”
Journal of the Royal Statistical Society Series B
,
77
, pp.
473
484
.
28.
Kulczycki
,
P.
,
2001
, “
An Algorithm for Bayes Parameter Estimation
,”
ASME J. Dyn. Syst., Meas., Control
,
123
, pp.
611
614
.
29.
Yuen
,
K. V.
,
Katafygiotis
,
L. S.
,
Papadimitriou
,
C.
, and
Mickleborough
,
N. C.
,
2001
, “
Optimal Sensor Placement Methodology for Identification With Unmeasured Excitation
,”
ASME J. Dyn. Syst., Meas., Control
,
123
, pp.
677
686
.
30.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Mathematics of Control, Signals, and Systems
,
2
, pp.
303
314
.
31.
Walter, E., and Pronzato, L., 1997, Identification of Parametric Models From Experimental Data, Springer-Verlag, Berlin (Germany).
32.
Hasselman, T. K., Anderson, M. C., and Wenshui, G., 1998, “Principal Components Analysis for Nonlinear Model Correlation, Updating and Uncertainty Evaluation,” Proceedings of the 16th International Modal Analysis Conference, pp. 664–651.
33.
Mottershead
,
J. E.
, and
Friswell
,
M. I.
,
1993
, “
Model Updating in Structural Dynamics: A Survey
,”
J. Sound Vib.
,
162
(
2
), pp.
347
375
.
34.
http://www.ulg.ac.be/ltas-vis/costf3/costf3.html, portal Web site of the COST-F3 action.
35.
Kerschen
,
G.
,
Lenaerts
,
V.
,
Marchesiello
,
S.
, and
Fasana
,
A.
,
2001
, “
A Frequency Domain vs. a Time Domain Identification Technique for Non-linear Parameters Applied to Wire Rope Isolators
,”
ASME J. Dyn. Syst., Meas., Control
,
123
, pp.
645
650
.
36.
Doebling, S. W., 2002, “Structural Dynamics Model Validation: Pushing the Envelope,” Proceedings of the International Conference on Structural Dynamics Modelling—Test, Analysis, Correlation and Validation, Madeira Island (Portugal).
You do not currently have access to this content.