By taking advantage of modal decoupling and reduction of order, we derive a simplified procedure for applying the method of multiple scales to determine the stability boundaries of parametrically excited, gyroscopic systems. The analytic advantages of the procedure are illustrated with three examples.

1.
Meirovitch
,
L.
,
1975
, “
A Modal Analysis for the Response of Linear Gyroscopic Systems
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
446
450
.
2.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
, pp.
738
744
.
3.
Renshaw
,
A. A.
,
1997
, “
Modal Decoupling of Systems Described by Three Linear Operators
,”
ASME J. Appl. Mech.
,
64
, pp.
238
240
.
4.
Hryniv
,
R. O.
,
Lancaster
,
P.
, and
Renshaw
,
A. A.
,
1999
, “
A Stability Criterion for Parameter Dependent Gyroscopic Systems
,”
ASME J. Appl. Mech.
,
66
, pp.
660, 664
660, 664
.
5.
Jha
,
R. K.
, and
Parker
,
R. G.
,
2000
, “
Spatial Discretization of Axially Moving Media Vibration Problems
,”
ASME J. Vibr. Acoust.
,
122
, pp.
290
294
.
6.
Lee
,
K.-Y.
, and
Renshaw
,
A. A.
,
1999
, “
Solution of the Moving Mass Problem Using Complex Eigenfunction Expansions
,”
ASME J. Appl. Mech.
,
67
, pp.
823
827
.
7.
Lee
,
K.-Y.
, and
Renshaw
,
A. A.
,
2002
, “
A Numerical Comparison of Alternative Galerkin Methods for Eigenvalue Estimation
,”
J. Sound Vib.
,
253
(
2
), pp.
359
372
.
8.
Parker
,
R. G.
, and
Lin
,
Y.
,
2001
, “
Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuations
,”
ASME J. Appl. Mech.
,
68
, pp.
49
57
.
9.
Mockensturm
,
E. M.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,”
ASME J. Vibr. Acoust.
,
118
, pp.
346
351
.
10.
Lee, K.-Y., and Renshaw, A. A., 2002, “Stability Analysis or Parametrically Excited Systems Using Spectral Collocation,” J. Sound Vib., to appear.
11.
Iwan
,
W. D.
, and
Moeller
,
T. L.
,
1976
, “
The Stability of a Spinning Elastic Disk with a Transverse Load System
,”
ASME J. Appl. Mech.
,
43
, pp.
485
490
.
12.
Renshaw
,
A. A.
, and
Mote
, Jr.,
C. D.
,
1992
, “
Absence of One Nodal Diameter Critical Speed Modes in an Axisymmetric Rotating Disk
,”
ASME J. Appl. Mech.
,
59
, pp.
687
688
.
13.
Mote
, Jr.,
C. D.
,
1970
, “
Stability of Circular Plates Subjected to Moving Loads
,”
J. Franklin Inst.
,
290
(
4
), pp.
329
344
.
14.
Renshaw
,
A. A.
, and
Mote
, Jr.,
C. D.
,
1996
, “
Local Stability of Gyroscopic Systems Near Vanishing Eigenvalues
,”
ASME J. Appl. Mech.
,
63
, pp.
116
120
.
15.
Tian
,
J. F.
, and
Hutton
,
S. G.
,
2001
, “
Cutting-Induced Vibration in Circular Saws
,”
J. Sound Vib.
,
242
(
5
), pp.
907
922
.
16.
Stone
,
E.
, and
Askari
,
A.
, 2002, “Nonlinear Models of Chatter in Drilling Processes,” Dynamical Systems, 17(1), pp. 65–85.
You do not currently have access to this content.