By taking advantage of modal decoupling and reduction of order, we derive a simplified procedure for applying the method of multiple scales to determine the stability boundaries of parametrically excited, gyroscopic systems. The analytic advantages of the procedure are illustrated with three examples.
Issue Section:
Technical Briefs
1.
Meirovitch
, L.
, 1975
, “A Modal Analysis for the Response of Linear Gyroscopic Systems
,” ASME J. Appl. Mech.
, 42
(2
), pp. 446
–450
.2.
Wickert
, J. A.
, and Mote
, C. D.
, Jr., 1990
, “Classical Vibration Analysis of Axially Moving Continua
,” ASME J. Appl. Mech.
, 57
, pp. 738
–744
.3.
Renshaw
, A. A.
, 1997
, “Modal Decoupling of Systems Described by Three Linear Operators
,” ASME J. Appl. Mech.
, 64
, pp. 238
–240
.4.
Hryniv
, R. O.
, Lancaster
, P.
, and Renshaw
, A. A.
, 1999
, “A Stability Criterion for Parameter Dependent Gyroscopic Systems
,” ASME J. Appl. Mech.
, 66
, pp. 660, 664
660, 664
.5.
Jha
, R. K.
, and Parker
, R. G.
, 2000
, “Spatial Discretization of Axially Moving Media Vibration Problems
,” ASME J. Vibr. Acoust.
, 122
, pp. 290
–294
.6.
Lee
, K.-Y.
, and Renshaw
, A. A.
, 1999
, “Solution of the Moving Mass Problem Using Complex Eigenfunction Expansions
,” ASME J. Appl. Mech.
, 67
, pp. 823
–827
.7.
Lee
, K.-Y.
, and Renshaw
, A. A.
, 2002
, “A Numerical Comparison of Alternative Galerkin Methods for Eigenvalue Estimation
,” J. Sound Vib.
, 253
(2
), pp. 359
–372
.8.
Parker
, R. G.
, and Lin
, Y.
, 2001
, “Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuations
,” ASME J. Appl. Mech.
, 68
, pp. 49
–57
.9.
Mockensturm
, E. M.
, Perkins
, N. C.
, and Ulsoy
, A. G.
, 1996
, “Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,” ASME J. Vibr. Acoust.
, 118
, pp. 346
–351
.10.
Lee, K.-Y., and Renshaw, A. A., 2002, “Stability Analysis or Parametrically Excited Systems Using Spectral Collocation,” J. Sound Vib., to appear.
11.
Iwan
, W. D.
, and Moeller
, T. L.
, 1976
, “The Stability of a Spinning Elastic Disk with a Transverse Load System
,” ASME J. Appl. Mech.
, 43
, pp. 485
–490
.12.
Renshaw
, A. A.
, and Mote
, Jr., C. D.
, 1992
, “Absence of One Nodal Diameter Critical Speed Modes in an Axisymmetric Rotating Disk
,” ASME J. Appl. Mech.
, 59
, pp. 687
–688
.13.
Mote
, Jr., C. D.
, 1970
, “Stability of Circular Plates Subjected to Moving Loads
,” J. Franklin Inst.
, 290
(4
), pp. 329
–344
.14.
Renshaw
, A. A.
, and Mote
, Jr., C. D.
, 1996
, “Local Stability of Gyroscopic Systems Near Vanishing Eigenvalues
,” ASME J. Appl. Mech.
, 63
, pp. 116
–120
.15.
Tian
, J. F.
, and Hutton
, S. G.
, 2001
, “Cutting-Induced Vibration in Circular Saws
,” J. Sound Vib.
, 242
(5
), pp. 907
–922
.16.
Stone
, E.
, and Askari
, A.
, 2002, “Nonlinear Models of Chatter in Drilling Processes,” Dynamical Systems, 17(1), pp. 65–85.Copyright © 2003
by ASME
You do not currently have access to this content.