The axisymmetric dynamic stability of rotating sandwich circular plates with a constrained damping layer subjected to a periodic uniform radial loading along the outer edge of the host plate is studied in the present paper. The viscoelastic material in middle layer is assumed to be frequency dependent and incompressible, and complex representations of moduli are used. Equations of motion of the system are derived by the finite element method where the geometry stiffness matrices induced by rotation and external load are evaluated from solutions of static problems. Bolotin’s method is employed to determine the regions of dynamic instability while the eigenvalue problems with frequency dependent parameters are solved by the modified complex eigensolution method. Numerical results show that the effects of constrained damping layer tend to stabilize the circular plate system and the widths of unstable regions decrease with increasing of rotational speeds.

1.
Bolotin, V. V., 1964, The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, USA.
2.
Evan-Iwanowski, R. M., 1976, Resonance Oscillations in Mechanical Systems, Elsevier, Amsterdam, Holland.
3.
Tani
,
J.
, and
Nakamura
,
T.
,
1978
, “
Dynamic Stability of Annular Plates Under Periodic Radial Loads
,”
J. Acoust. Soc. Am.
,
64
, pp.
827
831
.
4.
Tani
,
J.
, and
Nakamura
,
T.
,
1978
, “
Parametric Resonance of Annular Plates Under Pulsating Uniform Internal and External Loads With Different Periods
,”
J. Sound Vib.
,
60
, pp.
289
297
.
5.
Tani
,
J.
, and
Nakamura
,
T.
,
1980
, “
Dynamic Stability of Annular Plates Under Pulsating Torsion
,”
ASME J. Appl. Mech.
,
47
, pp.
595
600
.
6.
Tani
,
J.
, and
Doki
,
H.
,
1982
, “
Dynamic Stability of Orthotropic Annular Plates Under Pulsating Radial Loads
,”
J. Acoust. Soc. Am.
,
72
, pp.
845
850
.
7.
Tani
,
J.
,
1981
, “
Dynamic Stability of Orthotropic Annular Plates Under Pulsating Torsion
,”
J. Acoust. Soc. Am.
,
69
, pp.
1688
1694
.
8.
Chen
,
L. W.
, and
Juang
,
D. P.
,
1987
, “
Axisymmetric Dynamic Stability of a Bimodulus Thick Circular Plate
,”
Comput. Struct.
,
26
, pp.
933
939
.
9.
Chen
,
L. W.
, and
Hwang
,
J. R.
,
1988
, “
Axisymmetric Dynamic Stability of Transversely Isotropic Mindlin Circular Plates
,”
J. Sound Vib.
,
121
, pp.
307
315
.
10.
Chen
,
L. W.
, and
Hwang
,
J. R.
,
1988
, “
Axisymmetric Dynamic Stability of Polar Orthotropic Thick Circular Plates
,”
J. Sound Vib.
,
125
, pp.
555
563
.
11.
Chen
,
L. W.
,
Hwang
,
J. R.
, and
Doong
,
J. L.
,
1989
, “
Asymmetric Dynamic Stability of Thick Annular Plates Based on a High-Order Plate Theory
,”
J. Sound Vib.
,
130
, pp.
425
437
.
12.
Roy
,
P. K.
, and
Ganesan
,
N.
,
1993
, “
A Vibration and Damping Analysis of Circular Plates With Constrained Damping Layer Treatment
,”
Comput. Struct.
,
49
, pp.
269
274
.
13.
Yu
,
S. C.
, and
Huang
,
S. C.
,
2001
, “
Vibration of a Three-Layered Viscoelastic Sandwich Circular Plate
,”
Int. J. Mech. Sci.
,
43
, pp.
2215
2236
.
14.
Seubert
,
S. L.
,
Anderson
,
T. J.
, and
Smelser
,
R. E.
,
2000
, “
Passive Damping of Spinning Disks
,”
J. Vib. Control
,
6
, pp.
715
725
.
15.
Wang
,
H. J.
, and
Chen
,
L. W.
,
2002
, “
Vibration and Damping Analysis of a Three-Layered Composite Annular Plate With a Viscoelastic Mid-Layer
,”
Compos. Struct.
,
58
, pp.
563
570
.
16.
Wang
,
H. J.
, and
Chen
,
L. W.
,
2003
, “
Axisymmetric Dynamic Stability of Sandwich Circular Plates
,”
Compos. Struct.
,
59
, pp.
99
107
.
17.
Lin
,
R. M.
, and
Lim
,
M. K.
,
1996
, “
Complex Eigensensitivity-Based Characterization of Structures With Viscoelastic Damping
,”
J. Acoust. Soc. Am.
,
100
, pp.
3182
3191
.
18.
Stevens
,
K. K.
, and
Evan-Iwanowski
,
R. M.
,
1969
, “
Parametric Resonance of Viscoelastic Columns
,”
Int. J. Solids Struct.
,
5
, pp.
755
765
.
19.
Irie
,
T.
,
Yamada
,
G.
, and
Aomura
,
S.
,
1980
, “
Natural Frequencies of Mindlin Circular Plates
,”
ASME J. Appl. Mech.
,
47
, pp.
652
655
.
20.
Pardoen
,
G. C.
,
1978
, “
Asymmetric Vibration and Stability of Circular Plates
,”
Comput. Struct.
,
9
, pp.
89
95
.
21.
Liu
,
C. F.
,
Lee
,
J. F.
, and
Lee
,
Y. T.
,
2000
, “
Axisymmetric Vibration Analysis of Rotating Annular Plates by a 3D Finite Element
,”
Int. J. Solids Struct.
,
37
, pp.
5813
5827
.
You do not currently have access to this content.