The dynamical behavior of a parametrically excited simple rigid disk-rotor supported by active magnetic bearings (AMB) is investigated, without gyroscopic effects. The principal parametric resonance case is considered and studied. The motion of the rotor is modeled by a coupled second-order nonlinear ordinary differential equations. Their approximate solutions are sought applying the method of multiple scales. A reduced system of four first-order ordinary differential equations are determined to describe the time variation of the amplitudes and phases of the vibration in the horizontal and vertical directions. The steady-state response and the stability of the solutions for various parameters are studied numerically, using the frequency response function method. The numerical results show that the system behavior includes multiple solutions, jump phenomenon, and sensitive dependence on initial conditions. It is also shown that the system parameters have different effects on the nonlinear response of the rotor. Results are compared to previously published work.

1.
Earnshaw
,
S.
, 1842, “
On the Nature of Molecular Forces
,”
Trans. Cambridge Philos. Soc.
0371-5779,
7
, pp.
97
112
.
2.
Stein
,
M.
, 1959, “
Loads and Deformations of Buckled Rectangular Plates
,” NASA Technical Report R-40,
National Aeronautics and Space Administration
.
3.
Schaeffer
,
D. G.
, and
Golubitsky
,
M.
, 1979, “
Boundary Conditions and Mode Jumping in the Buckling of Rectangular Plate
,”
Commun. Math. Phys.
0010-3616,
69
, pp.
209
236
.
4.
Chen
,
H.
, and
Virgin
,
L. N.
, 2004, “
Dynamic Analysis of Modal Shifting and Mode Jumping in Thermally Buckled Plates
,”
J. Sound Vib.
0022-460X,
278
, pp.
233
256
.
5.
Gelin
,
A.
,
Pugnet
,
J.
, and Hagopian, 1990, “
Dynamic Behavior of Flexible Rotors With Active Magnetic Bearings on Safety Auxiliary Bearings
,”
Proc. 3rd International Conference on Rotor Dynamics
,
Lyon
, France, pp.
503
508
.
6.
Ishii
,
T.
, and
Kirk
,
R. G.
, 1991, “
Transient Response Technique Applied to Active Magnetic Bearing Machinery During Rotor Drop
,”
13th Biennial ASME Conference on Mechanical Vibration and Noise
,
Miami, FL
, September 22–25, Vol.
35
, pp.
191
199
.
7.
Youcef-Toumi
,
K.
, and
Reddy
,
S.
, 1992, “
Dynamic Analysis and Control of High Speed and High Precision Active Magnetic Bearings
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
114
, pp.
623
633
.
8.
Xie
,
H.
, and
Folwers
,
G. T.
, 1994, “
Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System
,” ASME Winter Annual Meeting, Nov., Chicago, IL, pp.
13
18
.
9.
Ramesh
,
K.
, and
Kirk
,
R. G.
, 1994, “
Rotor Drop Test Stand for AMB Rotating Machinery, Part II: Steady-State Analysis and Comparison to Experimental Results
,”
4th International Symposium on Magnetic Bearing
, ETH Zurich, pp.
213
218
.
10.
Schweitzer
,
G.
,
Bleuler
,
H.
, and
Traxler
,
A.
, 1994,
Active Magnetic Bearings, Basics, Properties and Applications of Active Magnetic Bearings (AMB)
,
Springer
,
Berlin
.
11.
Virgin
,
L. N.
,
Walsh
,
T. F.
, and
Knight
,
J. D.
, 1995, “
Nonlinear Behavior of a Magnetic Bearing System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
582
588
.
12.
Shiau
,
T. N.
,
Sheu
,
G. J.
, and
Yang
,
C. D.
, 1997, “
Vibration Control of a Flexible Rotor in Magnetic Bearings Using Hybri Method and H∞ Control Theory
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
, pp.
178
185
.
13.
Wang
,
X.
, and
Noah
,
S.
, 1998, “
Nonlinear Dynamics of a Magnetically Supported Rotor on Safety Auxiliary Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
596
606
.
14.
Sivrioglu
,
S.
, and
Nonami
,
K.
, 1998, “
Sliding Mode Control With Time-Varying Hyperlane for AMB Systems
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
3
(
1
), pp.
51
59
.
15.
Chinta
,
M.
, and
Palazzolo
,
A. B.
, 1998, “
Stability and Bifurcation of Rotor Motion in a Magnetic Bearing
,”
J. Sound Vib.
0022-460X,
214
, pp.
793
803
.
16.
Steinschaden
,
N.
, and
Springer
,
H.
, 1999, “
Some Nonlinear Effects of Magnetic Bearings
,”
Proc. 1999 ASME Design Engineering Technical Conferences
, Sept. 12–15,
Las Vegas
, NV.
17.
Steinschaden
,
N.
, and
Springer
,
H.
, 1999, “
Nonlinear Stability Analysis of Active Magnetic Bearings
,”
Proc. 5th International Symposium on Magnetic Suspension Technology
, Dec. 1–3,
Santa Barbara
, CA.
18.
Ji
,
J. C.
,
Yu
,
L.
, and
Leung
,
A. Y. T.
, 2000, “
Bifurcation Behavior of a Rotor Supported by Active Magnetic Bearings
,”
J. Sound Vib.
0022-460X,
235
, pp.
133
151
.
19.
Ji
,
J. C.
, and
Hansen
,
C. H.
, 2001, “
Non-linear Oscillations of a Rotor in Active Magnetic Bearings
,”
J. Sound Vib.
0022-460X,
240
, pp.
599
612
.
20.
Jang
,
M. J.
, and
Chen
,
C. K.
, 2001, “
Bifurcation Analysis in Flexible Rotor Supported by Active Magnetic Bearing
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
11
(
8
), pp.
2163
2178
.
21.
Ji
,
J. C.
, and
Leung
,
A. Y. T.
, 2003, “
Non-linear Oscillations of a Rotor-Magnetic Bearing System Under Superharmonic Resonance Conditions
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
829
835
.
22.
Zhang
,
W.
, and
Zu
,
J. W.
, 2003, “
Analysis of Nonlinear Dynamics for a Rotor-Active Magnetic Bearing System With Time-Varying Stiffness, Part I: Formulation and Local Bifurcations
,”
Proc. 2003 ASME International Mechanical Engineering Congress and Exposition
,
Washington
, DC, November 15–21, pp.
631
640
.
23.
Ho
,
Y. S.
, and
Liu
,
H.
, 2003, “
Effect of Thrust Magnetic Bearing on Stability and Bifurcation of a Flexible Rotor Active Magnetic Bearing System
,”
ASME J. Vibr. Acoust.
0739-3717,
125
, pp.
307
316
.
24.
Jang
,
M. J.
,
Chen
,
C. L.
, and
Tsao
,
M.
, 2005, “
Sliding Mode Control for Active Magnetic Bearing System With Flexible Rotor
,”
J. Franklin Inst.
0016-0032,
342
, pp.
401
419
.
25.
Zhang
,
W.
,
Yao
,
M. H.
, and
Zhan
,
X. P.
, 2005, “
Multi-Pulse Chaotic Motions of a Rotor-Active Magnetic Bearing System With Time-Varying Stiffness
,”
Chaos, Solitons Fractals
0960-0779,
27
, pp.
175
186
.
26.
Nayfeh
,
A. H.
, 1973,
Perturbation Methods
,
Wiley
,
New York
.
27.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1995,
Nonlinear Oscillations
,
Wiley
,
New York
.
You do not currently have access to this content.