Anisotropic piezocomposite transducers (APTs), such as macro fiber composites and active fiber composites, have great potential to be used as structurally integrated transducers for guided-wave (GW) structural health monitoring. Their main advantages over conventional monolithic piezoceramic wafer transducers are mechanical flexibility, curved surface conformability, power efficiency, their ability to excite focused GW fields, and their unidirectional sensing capability as a GW sensor. In this paper, models are developed to describe excitation of GW fields by APTs in isotropic structures. The configurations explored are plane Lamb-wave fields in beams with rectangular cross-section, axisymmetric GW fields in cylinders, and 3-D GW fields in plates. The dynamics of the substrate and transducer are assumed uncoupled. The actuator is modeled as causing shear traction at the edges of the actuator’s active area along the fiber direction. The sensor is modeled as sensing the average extensional strain over the active area along the fiber direction. The work is unique in that the formulation is based on 3-D elasticity, and no reduced-order structural assumptions are used. This is crucial to model multimodal GW propagation, especially at high frequencies. A formulation is also proposed to model the behavior of APTs as GW sensors. Finally, results from experimental tests to examine the validity of the models are discussed and the possible sources of error are examined in detail.

1.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
, 2005, “
Lamb Wave Methods in Structural Health Monitoring
,”
Damage Prognosis
,
D. Inman
,
C. R.
Farrar
,
V. Lopes
, Jr.
, and
V.
Steffen
Jr.
, eds.,
Wiley
, Chichester, West Sussex, UK, pp.
235
257
.
2.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
, 2007, “
Review of Guided-Wave Structural Health Monitoring
,”
Shock Vib. Dig.
0583-1024,
39
(
2
), pp.
91
114
.
3.
Monkhouse
,
R. S. C.
,
Wilcox
,
P. D.
,
Lowe
,
M. S. J.
,
Dalton
,
R. P.
, and
Cawley
,
P.
, 2000, “
The Rapid Monitoring of Structures Using Interdigital Lamb Wave Transducers
,”
Smart Mater. Struct.
0964-1726,
9
, pp.
304
309
.
4.
Badcock
,
R. A.
, and
Birt
,
E. A.
, 2000, “
The Use of 0-3 Piezocomposite Embedded Lamb Wave Sensors for Detection of Damage in Advanced Fibre Composites
,”
Smart Mater. Struct.
0964-1726,
9
, pp.
291
297
.
5.
Hayward
,
G.
,
Hailu
,
B.
,
Farlow
,
R.
,
Gachagan
,
A.
, and
McNab
,
A.
, 2001, “
The Design of Embedded Transducers for Structural Health Monitoring Applications
,”
Proc. SPIE
0277-786X,
4327
, pp.
312
323
.
6.
IEEE, 1988, “
IEEE Standard on Piezoelectricity ANSI/IEEE Std 176-1987
,” IEEE, New York.
7.
Wilkie
,
W. K.
,
High
,
J.
, and
Bockman
,
J.
, 2002, “
Reliability Testing of NASA Piezocomposite Actuators
,”
Proceedings of the 8th International Conference on New Actuators
,
Bremen
, Germany, June 10–12.
8.
Wilbur
,
M. L.
, and
Wilkie
,
W. K.
, 2004, “
Active-Twist Rotor Control Applications for UAVs
,”
Proceedings of the 24th Army Science Conference
, Paper No. ADM001736, Orlando, FL, Nov. 29–Dec. 2.
9.
Bent
,
A.
,
Hagood
,
N.
, and
Rodgers
,
J.
, 1995, “
Anisotropic Actuation With Piezoelectric Fiber Composites
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
6
, pp.
338
349
.
10.
Schulz
,
M. J.
,
Sundaresan
,
M. J.
,
Ghoshal
,
A.
, and
Pai
,
P. F.
, 2000, “
Active Fiber Composites for Structural Health Monitoring
,”
Proc. SPIE
0277-786X,
3992
, pp.
13
24
.
11.
Datta
,
S.
,
Kirikera
,
G. R.
,
Schulz
,
M. J.
, and
Sundaresan
,
M. J.
, 2003, “
Active Fiber Composite Continuous Sensors
,”
Proc. SPIE
0277-786X,
5062
, pp.
669
676
.
12.
Barbezat
,
M.
,
Brunner
,
A. J.
,
Huber
,
C.
, and
Flüeler
,
P.
, 2004, “
Integrated Active Fibre Composite Elements: Characterization for Acoustic Emission and Acousto-Ultrasonics
,”
Proc. 15th International Conference on Adaptive Structures and Technologies
,
Bar Harbor
, ME, October 24–27.
13.
Wait
,
J. R.
,
Park
,
G.
,
Sohn
,
H.
, and
Farrar
,
C. R.
, 2004, “
Plate Damage Identification Using Active Wave Propagation and Impedance Methods
,”
Proc. SPIE
0277-786X,
5394
, pp.
53
65
.
14.
Lamb
,
H.
, 1917, “
On Waves in an Elastic Plate
,”
Proc. R. Soc. London, Ser. A
1364-5021,
93
(
651
), pp.
114
128
.
15.
Gazis
,
D. C.
, 1958, “
Exact Analysis of the Plane-Strain Vibrations of Thick-Walled Hollow Cylinders
,”
J. Acoust. Soc. Am.
0001-4966,
30
, pp.
786
794
.
16.
Viktorov
,
I. A.
, 1967,
Rayleigh and Lamb Waves
,
Plenum
, New York.
17.
Ditri
,
J.
, and
Rose
,
J. L.
, 1994, “
Excitation of Guided Waves in Generally Anisotropic Layers Using Finite Sources
,”
ASME Trans. J. Appl. Mech.
0021-8936,
61
(
2
), pp.
330
338
.
18.
Santosa
,
F.
, and
Pao
,
Y.-H.
, 1989, “
Transient Axially Asymmetric Response of an Elastic Plate
,”
Wave Motion
0165-2125,
11
, pp.
271
295
.
19.
Wilcox
,
P.
, 2004, “
Modeling the Excitation of Lamb and SH Waves by Point and Line Sources
,”
Rev. Prog. Quant. Nondestr. Eval.
0743-0760,
23
, pp.
206
213
.
20.
Giurgiutiu
,
V.
, 2003, “
Lamb Wave Generation With Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
Proc. SPIE
0277-786X,
5056
, pp.
111
122
.
21.
Lin
,
X.
, and
Yuan
,
F. G.
, 2001, “
Diagnostic Lamb Waves in an Integrated Piezoelectric Sensor/Actuator Plate: Analytical and Experimental Studies
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
907
913
.
22.
Rose
,
L. R. F.
, and
Wang
,
C. H.
, 2004, “
Mindlin Plate Theory for Damage Detection: Source Solutions
,”
J. Acoust. Soc. Am.
0001-4966,
116
(
1
), pp.
154
171
.
23.
Veidt
,
M.
,
Liu
,
T.
, and
Kitipornchai
,
S.
, 2001, “
Flexural Waves Transmitted by Rectangular Piezoceramic Transducers
,”
Smart Mater. Struct.
0964-1726,
10
(
4
), pp.
681
688
.
24.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
, 2004, “
Modeling of Piezoelectric-Based Lamb Wave Generation and Sensing for Structural Health Monitoring
,”
Proceedings of the SPIE Symposium on Smart Structures & Materials/ NDE 2004
, Paper No. 5391-42, San Diego, CA, March 14–18.
25.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
, 2005, “
Piezoelectric-Actuator Excited-Wave Field Solutions for Guided-Wave Structural Health Monitoring
,”
Proceedings of the SPIE Symposium on Smart Structures & Materials/ NDE
, Paper No. 5765-34, San Diego, CA, March 6–10.
26.
Raghavan
,
A.
, and
Cesnik
,
C. E. S.
, 2005, “
Finite Dimensional Piezoelectric Transducer Modeling for Guided Wave Based Structural Health Monitoring
,”
Smart Mater. Struct.
0964-1726,
14
, pp.
1448
1461
.
27.
González
,
A.
, and
Alemany
,
C.
, 1996, “
Determination of the Frequency Dependence of Characteristic Constants in Lossy Piezoelectric Materials
,”
J. Phys. D
0022-3727
29
(
9
), pp.
2476
2482
.
28.
Kastrzhitskaya
,
E. V.
, and
Meleshko
,
V. V.
, 1991, “
Propagation of Harmonic Waves in an Elastic Rectangular Waveguide
,”
Sov. Appl. Mech.
0038-5298,
26
(
8
), pp.
773
781
.
29.
Miklowitz
,
J.
, 1978,
The Theory of Elastic Waves and Waveguides
,
North Holland
, New York.
30.
Graff
,
K. F.
, 1991,
Wave Motion in Elastic Solids
,
Dover
, New York.
31.
Moulin
,
E.
,
Assaad
,
J.
, and
Delebarre
,
C.
, 2000, “
Modeling of Lamb Waves Generated by Integrated Transducers in Composite Plates Using a Coupled Finite Element–Normal Modes Expansion Method
,”
J. Acoust. Soc. Am.
0001-4966,
107
(
1
), pp.
87
94
.
32.
Veidt
,
M.
,
Liu
,
T.
, and
Kitipornchai
,
S.
, 2000, “
Experimental Investigation of the Acousto-Ultrasonic Transfer Characteristics of Adhesively Bonded Piezoceramic Transducers
,”
Smart Mater. Struct.
0964-1726,
9
(
1
), pp.
19
23
.
33.
Crawley
,
E. F.
, and
de Luis
,
J.
, 1987, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
0001-1452,
25
(
10
), pp.
1373
1385
.
You do not currently have access to this content.