This paper deals with the problem of finding the optimal stiffnesses and damping coefficients of a two degree of freedom (2DOF) system acting as a dynamic vibration absorber (DVA) on a beam structure. In this sense, a heuristic criterion for the optimization problem will be developed to contemplate this particular type of DVA. Accordingly, it is planned to minimize the amplitude of vibration in predetermined points of the main structure. Two optimizations will be proposed for two DVAs of 1DOF to compare their performances with the optimized 2DOF system. A simulated annealing algorithm is used to obtain the DVA’s optimal parameters for minimum amplitude in a given point of the beam. The best configuration depends on the location of the absorbers on the beam and, for a fixed location, on the distribution of the stiffness constants.

1.
Frahm
,
H.
, 1909, “
Device for Damping Vibration Bodies
,” U.S. Patent No. 989958.
2.
Brennan
,
M. J.
, and
Dayou
,
J.
, 2000, “
Global Control of Vibration Using a Tunable Vibration Neutralizer
,”
J. Sound Vib.
0022-460X,
232
, pp.
585
600
.
3.
Ormondroyd
,
J.
, and
Den Hartog
,
J. P.
, 1928, “
The Theory of the Vibration Absorber
,”
Trans. ASME
0097-6822,
50
, pp.
9
22
.
4.
Den Hartog
,
J. P.
, 1956,
Mechanical Vibrations
,
McGraw-Hill
,
New York
.
5.
Jacquot
,
R. G.
, 1978, “
Optimal Dynamic Absorbers for General Beam Systems
,”
J. Sound Vib.
0022-460X,
60
, pp.
535
542
.
6.
Thompson
,
A. G.
, 1981, “
Optimum Tuning and Damping of a Dynamic Absorber Applied to a Force Excited and Damped Primary System
,”
J. Sound Vib.
0022-460X,
77
, pp.
403
415
.
7.
Warburton
,
G. B.
, 1982, “
Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
10
, pp.
381
401
.
8.
Kitis
,
L.
,
Wang
,
B. P.
, and
Pilkey
,
W. D.
, 1983, “
Vibration Reduction Over a Frequency Range
,”
J. Sound Vib.
0022-460X,
89
, pp.
559
569
.
9.
Snowdon
,
J. C.
,
Wolfe
,
A. A.
, and
Kerlin
,
R. L.
, 1984, “
The Cruciform Dynamic Vibration Absorber
,”
J. Acoust. Soc. Am.
0001-4966,
75
, pp.
1792
1799
.
10.
Vakakis
,
A. F.
, and
Paipetis
,
S. A.
, 1986, “
The Effect of a Viscously Damped Dynamic Absorber on a Linear Multi-Degree-of-Freedom-System
,”
J. Sound Vib.
0022-460X,
105
, pp.
49
60
.
11.
Ozer
,
M. B.
, and
Royston
,
T. J.
, 2005, “
Extending Den Hartog’s Vibration Absorber Technique to Multi-Degree-of-Freedom Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
127
, pp.
341
350
.
12.
Sherman
,
J.
, and
Morrison
,
W. J.
, 1949, “
Adjustment of an Inverse Matrix Corresponding to Changes in the Elements of a Given Column or a Given Row of the Original Matrix
,”
Ann. Math. Stat.
0003-4851,
20
, p.
621
.
13.
Rice
,
H. J.
, 1993, “
Design of Multiple Vibration Absorber Systems Using Modal Data
,”
J. Sound Vib.
0022-460X,
160
, pp.
378
385
.
14.
Rade
,
D. A.
, and
Steffen
,
V.
, 2000, “
Optimization of Dynamic Vibration Absorbers Over a Frequency Band
,”
Mech. Syst. Signal Process.
0888-3270,
14
, pp.
679
690
.
15.
Zuo
,
L.
, and
Nayfeh
,
S. A.
, 2004, “
Minimax Optimization of Multi-Degree-of-Freedom Tuned-Mass Dampers
,”
J. Sound Vib.
0022-460X,
272
, pp.
893
908
.
16.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
C. D.
, 1983, “
Optimization by Simulated Annealing
,”
Science
0036-8075,
220
(
4598
), pp.
671
680
.
17.
Dowell
,
E. H.
, 1979, “
On Some General Properties of Combined Dynamical Systems
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
206
209
.
18.
1984, MATLAB,
Library reference manual
, TheMathworks 12 Inc.
19.
Metropolis
,
N.
,
Rosenbluth
,
A.
,
Rosenbluth
,
M.
,
Teller
,
A.
, and
Teller
,
E.
, 1953, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
0021-9606,
21
, pp.
1087
1092
.
20.
1988,
Numerical Recipes in C: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge
.
21.
Allwright
,
J. R. A.
, and
Carpenter
,
D. B.
, 1989, “
A Distributed Implementation of Simulated Annealing for the Travelling Salesman Problem
,”
Parallel Comput.
0167-8191,
10
(
3
), pp.
335
338
.
22.
Vecchi
,
M. P.
, and
Kirkpatrick
,
S.
, 1983, “
On the Optimal Location of Elementary Systems Using Simulated Annealing
,”
IEEE Trans. Comput.-Aided Des.
0278-0070,
2
, pp.
215
222
.
23.
Otten
,
R. H. J. M.
, and
van Ginneken
,
L. P. P. P.
, 1989,
The Annealing Algorithm
,
Kluwer
,
Boston
.
24.
Chang
,
Y.
,
Yeh
,
L.
, and
Chiu
,
M.
, 2005, “
Optimization of Constrained Composite Absorbers Using Simulated Annealing
,”
Appl. Acoust.
0003-682X,
66
, pp.
341
352
.
25.
Ceranic
,
B.
,
Fryer
,
C.
, and
Baines
,
R. W.
, 2001, “
An Application of Simulated Annealing to the Optimum Design of Reinforced Retaining Structures
,”
Comput. Struct.
0045-7949,
79
, pp.
1569
1581
.
26.
Yong
,
L.
,
Lishan
,
K.
, and
Evans
,
D. J.
, 1995, “
The Annealing Evolution Algorithm as a Function Optimizer
,”
Parallel Comput.
0167-8191,
21
, pp.
389
400
.
27.
Ewins
,
D. J.
, 1984,
Modal Testing. Theory and Practice
,
Willey
,
New York
.
28.
Ozer
,
M. B.
, and
Royston
,
T. H.
, 2005, “
Application of Sherman–Morrison Matrix Inversion Formula to Damped Vibration Absorbers Attached to Multi-Degree of Freedom Sytems
,”
J. Sound Vib.
0022-460X,
283
(
3–5
), pp.
341
350
.
You do not currently have access to this content.