For high-speed rotating machinery, such as turbomachinery, the vibration caused by the rotor mass imbalance is a major source of maintenance problems. Vibration reduction by balancing under practical constraints and data uncertainty is often a challenging problem. In this paper, we formulate the problem of high-speed flexible rotor balancing as a convex optimization problem. This formulation not only solves the minmax balancing problem efficiently, but also allows the inclusion of various practical constraints. This formulation can be extended in a generalized unified balancing approach, which combines the advantages of both the influence coefficient approach and the modal balancing. Furthermore, a robust balancing approach is also developed to handle uncertainties in the influence coefficient and in the vibration response. This robust balancing approach provides the safeguard for the worse case scenario under the unknown but bounded uncertainty. All the resulting optimization problems are solved by second order cone programming. A large turbine generator balancing case is used to demonstrate that the proposed balancing technique provides the flexibility and efficiency beyond those of the existing balancing methods.

1.
Gunter
,
E. J.
,
Barrett
,
L. E.
, and
Allaire
,
P. E.
, 1976, “
Balancing of Multimass Flexible Rotors
,”
Proceedings of the Fifth Turbomachinery Symposium
, pp.
133
139
.
2.
Foiles
,
W. C.
,
Allaire
,
P. E.
, and
Gunter
,
E. J.
, 1998, “
Review: Rotor Balancing
,”
Shock Vib.
1070-9622,
5
, pp.
325
336
.
3.
Rieger
,
N. F.
, 1986,
Balancing of Rigid and Flexible Rotors
,
The Shock and Vibration Information Center
,
Washington, DC
.
4.
Darlow
,
M. S.
, 1989,
Balancing of High Speed Machinery
,
Springer
,
New York
.
5.
Garvey
,
E. J.
,
Williams
,
E. J.
,
Cotter
,
G.
,
Davies
,
C.
, and
Grum
,
N.
, 2005, “
Reduction of Noise Effects for in situ Balancing of Rotors
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
3
), pp.
234
246
.
6.
Lu
,
C.-J.
, 2006, “
Stability Analysis of a Single-Ball Automatic Balancer
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
1
), pp.
122
125
.
7.
Goodman
,
T. P.
, 1964, “
A Least-Squares Method for Computing Balance Corrections
,”
J. Eng. Ind.
0022-0817,
86
, pp.
273
279
.
8.
Little
,
R. M.
, and
Pilkey
,
W. D.
, 1976, “
A Linear Programming Approach for Balancing Flexible Rotors
,”
J. Eng. Ind.
0022-0817,
98
(
3
), pp.
1030
1035
.
9.
Pilkey
,
W. D.
, and
Bailey
,
J.
, 1979, “
Constraint Balancing Techniques for Flexible Rotors
,”
ASME J. Mech. Des.
0161-8458,
101
(
2
), pp.
304
308
.
10.
Woomer
,
E.
, and
Pilkey
,
W. D.
, 1981. “
The Balancing of Rotating Shafts by Quadratic Programming
,”
ASME J. Mech. Des.
0161-8458,
103
, pp.
831
834
.
11.
Streit
,
R. L.
, 1986, “
Solution of Systems of Complex Linear Equations in the l∞ Norm With Constraints of the Unknowns
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
, pp.
132
149
.
12.
Foiles
,
W. C.
,
Gunter
,
E. J.
, and
Allaire
,
P. E.
, 2000, “
Min-Max Optimum Flexible Rotor Balancing Compared to Weighted Least-Squares Part I
,”
Seventh International Conference on Vibrations in Rotating Machinery
,
Nottingham, UK
.
13.
Little
,
R. M.
, 1971, “
The Application of Linear Programming Techniques to Balancing Flexible Rotors
,” Ph.D. thesis, University of Virginia.
14.
Zorzi
,
E. S.
,
Lee
,
C. C.
, and
Giordano
,
J. C.
, 1982, “
A Unified Approach to Balancing With Multiple Constraints
,”
Proceedings of the First International Conference on Rotor Dynamics
, Rome, Italy.
15.
Kanki
,
H.
,
Kawanishi
,
M.
, and
Ono
,
K.
, 1998, “
A New Balancing Method Applying LMI Optimization Method
,”
Proceedings of the Fifth International Conference on Rotor Dynamics
, Darmstadt, Germany, pp.
667
678
.
16.
Lund
,
J. W.
, and
Tonneson
,
J.
, 1972, “
Analysis and Experiments in Multiplane Balancing of Flexible Rotors
,”
J. Eng. Ind.
0022-0817,
94
(
1
), pp.
233
242
.
17.
Larsson
,
L.-O.
, 1976, “
On the Determination of the Influence Coefficients in Rotor Balancing, Using Linear Regression Analysis
,”
Vibrations in Rotating Machinery
,
Institute of Mechanical Engineers’ Conference
, Cambridge, England, Vol.
1976–1979
, pp.
93
97
.
18.
El-Ghaoui
,
L.
, and
Lebret
,
H.
, 1997, “
Robust Solutions to Least Squares Problems With Uncertain Data
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
18
, pp.
1035
1064
.
19.
Boyld
,
S.
, and
Vandenberghe
,
L.
, 2004.
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
20.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 2001,
Lectures on Modern Convex Optimization
(
MPS-SIAM Series on Optimization
),
SIAM
,
Philadelphia
.
21.
Nesterov
,
Y.
, and
Nemirovskii
,
A.
, 1994,
Interior-Point Polynomial Algorithms in Convex Programming
,
SIAM
,
Philadelphia
.
22.
Lobo
,
M.
,
Vandenberghe
,
L.
,
Boyd
,
S.
, and
Lebret
,
H.
, 1998, “
Application of Second Order Cone Programming
,”
Linear Algebr. Appl.
0024-3795,
284
, pp.
193
228
.
23.
Chandrasekaran
,
S.
,
Golub
,
G. H.
,
Gu
,
M.
, and
Sayed
,
A. H.
, 1998, “
Parameter Estimation in the Presence of Data Uncertainties
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
19
, pp.
235
252
.
24.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 1998. “
Robust Convex Optimization
,”
Math. Op. Res.
0364-765X,
23
, pp.
769
805
.
25.
Watson
,
G. A.
, 2001, “
Data Fitting Problems With Bounded Uncertainties in the Data
,”
SIAM J. Matrix Anal. Appl.
0895-4798,
22
, pp.
1274
1293
.
26.
Hindi
,
H. A.
, and
Boyd
,
S. P.
, 1998, “
Robust Solutions to l1, l2, and l∞ Linear Approximation Problems Using Convex Optimization
,” Technical Report,
Stanford University
, Stanford, CA.
27.
Sturm
,
J. F.
, 1999, “
Using SeDuMi 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
1055-6788,
11–12
, pp.
625
653
.
28.
Muramatsu
,
M.
, 2002, “
SS—An SOCP Solver
,” http://jsb.cs.uec.ac.jp/muramatu/SShttp://jsb.cs.uec.ac.jp/muramatu/SS
29.
Gunter
,
E. J.
,
Foiles
,
W. C.
, and
Allaire
,
P. E.
, 2000, “
Min-Max Optimum Flexible Rotor Balancing Compared to Weighted Least-Squares, Part II
,”
Seventh International Conference on Vibrations in Rotating Machinery
, Nottingham, UK.
30.
Gunter
,
E. J.
,
Fang
,
Z.
, and
Henderson
,
J. R.
, 1994, “
Static and Dynamic Analysis of a 1150MW Turbine Generator System
,”
Vibration Institute Proceedings, 18th Annual Meeting
.
You do not currently have access to this content.